Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING LLC
GLOBETECH MEDIA
GLOBETECH PUBLISHING LLC

Fluorescent Detection System Developed for Identifying Cancer

By BiotechDaily International staff writers
Posted on 14 May 2014
Image: The Fluoview 1000 confocal fluorescence microscope (Photo courtesy of Olympus).
Image: The Fluoview 1000 confocal fluorescence microscope (Photo courtesy of Olympus).
A new water-soluble fluorescent detection system that is extremely sensitive to pyrophosphate (PPi) has been discovered that might lead to the development of a method for early detection of cancer cells.

The highly sensitive probes or sensors that are able to report the PPi level could lead to improved cancer diagnostics, since PPi plays a key role in energy transduction, DNA replication and other metabolic processes that seriously diverge in cancer cells.

Scientists at the University of Jyväskylä (Finland) developed a simple metal complex which shows an intense orange fluorescent color in the presence of very low concentration of pyrophosphate (PPi) in water. The complex, also called a probe, had almost 1,000 times higher level of response than earlier methods and an unprecedented sensitivity to detect PPi at a subnanomolar level with a limit of detection (LOD) of 0.8 nM. The discovery represents the first water-soluble fluorescent sensor that is capable of detecting pyrophosphate at this sensitivity level under physiological conditions.

The investigators were able to show that the probe can image the pyrophosphate in the nuclei of living (HeLa) cells, making it an excellent probe for live cell pyrophosphate imaging. The HeLa cells, originally from Henrietta Lack's cervix carcinoma, are the most long-lived human cancer cell line and are often used as a cancer cell model. In addition to their applicability in water, they can easily be formulated into a hydrogel and coated onto paper strips for low-cost pyrophosphate detection. Fluorescence spectra were obtained on a Varian Cary Eclipse Fluorescence spectrophotometer (Agilent Technologies; Santa Clara, CA, USA) and confocal fluorescence microscopy images were recorded in the Olympus Fluoview 1000 setup (Olympus; Tokyo, Japan).

The authors concluded that a simple terpyridine-Zn(II) complex was efficient and selective in sensing of PPi in water. The ZnCl2L receptor complex showed remarkable fluorescent response, around 500-fold, and an excellent sensitivity toward PPi that allows a subnanomolar level detection. The ZnCl2L was found to form a hydrogel which was subsequently used to make gel coated paper strips for easy, low-cost detection of PPi. They believe these novel findings would be beneficial for the development of commercially viable chemosensory alternatives to enzyme and protein based assays in diagnostics and other clinical applications.

Related Links:

University of Jyväskylä
Agilent Technologies
Olympus 



Channels

Drug Discovery

view channel
Image: Star-like glial cells in red surround alpha-beta plaques in the cortex of a mouse with a model of Alzheimer\'s disease (Photo courtesy of Strittmatter laboratory/Yale University).

Experimental Cancer Drug Reverses Symptoms in Mouse Model of Alzheimer's Disease

An experimental, but clinically disappointing drug for treatment of cancer has been found to be extremely effective in reversing the symptoms of Alzheimer's disease (AD) in a mouse model.... Read more

Biochemistry

view channel
Image:  Model depiction of a novel cellular mechanism by which regulation of cryptochromes Cry1 and Cry2 enables coordination of a protective transcriptional response to DNA damage caused by genotoxic stress (Photo courtesy of the journal eLife, March 2015, Papp SJ, Huber AL, et al.).

Two Proteins Critical for Circadian Cycles Protect Cells from Mutations

Scientists have discovered that two proteins critical for maintaining healthy day-night cycles also have an unexpected role in DNA repair and protecting cells against genetic mutations that could lead... Read more

Business

view channel

NanoString and MD Anderson Collaborate on Development of Novel Multi-Omic Expression Profiling Assays for Cancer

The University of Texas MD Anderson Cancer Center (Houston, TX, USA) and NanoString Technologies, Inc. (Seattle, WA, USA) will partner on development of a revolutionary new type of assay—simultaneously profiling gene and protein expression, initially aiming to discover and validate biomarker signatures for immuno-oncology... Read more
 
Copyright © 2000-2015 Globetech Media. All rights reserved.