Features Partner Sites Information LinkXpress
Sign In
Demo Company

Fluorescent Detection System Developed for Identifying Cancer

By BiotechDaily International staff writers
Posted on 14 May 2014
Print article
Image: The Fluoview 1000 confocal fluorescence microscope (Photo courtesy of Olympus).
Image: The Fluoview 1000 confocal fluorescence microscope (Photo courtesy of Olympus).
A new water-soluble fluorescent detection system that is extremely sensitive to pyrophosphate (PPi) has been discovered that might lead to the development of a method for early detection of cancer cells.

The highly sensitive probes or sensors that are able to report the PPi level could lead to improved cancer diagnostics, since PPi plays a key role in energy transduction, DNA replication and other metabolic processes that seriously diverge in cancer cells.

Scientists at the University of Jyväskylä (Finland) developed a simple metal complex which shows an intense orange fluorescent color in the presence of very low concentration of pyrophosphate (PPi) in water. The complex, also called a probe, had almost 1,000 times higher level of response than earlier methods and an unprecedented sensitivity to detect PPi at a subnanomolar level with a limit of detection (LOD) of 0.8 nM. The discovery represents the first water-soluble fluorescent sensor that is capable of detecting pyrophosphate at this sensitivity level under physiological conditions.

The investigators were able to show that the probe can image the pyrophosphate in the nuclei of living (HeLa) cells, making it an excellent probe for live cell pyrophosphate imaging. The HeLa cells, originally from Henrietta Lack's cervix carcinoma, are the most long-lived human cancer cell line and are often used as a cancer cell model. In addition to their applicability in water, they can easily be formulated into a hydrogel and coated onto paper strips for low-cost pyrophosphate detection. Fluorescence spectra were obtained on a Varian Cary Eclipse Fluorescence spectrophotometer (Agilent Technologies; Santa Clara, CA, USA) and confocal fluorescence microscopy images were recorded in the Olympus Fluoview 1000 setup (Olympus; Tokyo, Japan).

The authors concluded that a simple terpyridine-Zn(II) complex was efficient and selective in sensing of PPi in water. The ZnCl2L receptor complex showed remarkable fluorescent response, around 500-fold, and an excellent sensitivity toward PPi that allows a subnanomolar level detection. The ZnCl2L was found to form a hydrogel which was subsequently used to make gel coated paper strips for easy, low-cost detection of PPi. They believe these novel findings would be beneficial for the development of commercially viable chemosensory alternatives to enzyme and protein based assays in diagnostics and other clinical applications.

Related Links:

University of Jyväskylä
Agilent Technologies

Print article



view channel
Image: Left: Green actin fibers create architecture of the cell. Right: With cytochalasin D added, actin fibers disband and reform in the nuclei (Photo courtesy of the University of North Carolina).

Actin in the Nucleus Triggers a Process That Directs Stem Cells to Mature into Bone

A team of cell biologists has discovered why treatment of mesenchymal stem cells (MSCs) with the mycotoxin cytochalasin D directs them to mature into bone cells (osteoblasts) rather than into fat cells... Read more


view channel

Molecular Light Shed on “Dark” Cellular Receptors

Scientists have created a new research tool to help find homes for orphan cell-surface receptors, toward better understanding of cell signaling, developing new therapeutics, and determining causes of drug side-effects. The approach may be broadly useful for discovering interactions of orphan receptors with endogenous, naturally... Read more

Lab Technologies

view channel
Image: The new ambr 15 fermentation micro-bioreactor system was designed to enhance microbial strain screening applications (Photo courtesy of Sartorius Stedim Biotech).

New Bioreactor System Streamlines Strain Screening and Culture

Biotechnology laboratories working with bacterial cultures will benefit from a new automated micro bioreactor system that was designed to enhance microbial strain screening processes. The Sartorius... Read more


view channel

Purchase of Biopharmaceutical Company Will Boost Development of Nitroxyl-Based Cardiovascular Disease Drugs

A major international biopharmaceutical company has announced the acquisition of a private biotech company that specializes in the development of drugs for treatment of cardiovascular disease. Bristol-Myers Squibb Co. (New York, NY, USA) has initiated the process to buy Cardioxyl Pharmaceuticals Inc. (Chapel Hill, NC, USA).... Read more
Copyright © 2000-2015 Globetech Media. All rights reserved.