Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC
GLOBETECH MEDIA

Mass Spectrometry Technology Maps Chemicals as They Migrate Into Skin

By BiotechDaily International staff writers
Posted on 14 May 2014
A mass spectrometry technique gaining acceptance for medical applications such as imaging tumor surfaces can also be used to analyze the migration of small-molecule compounds applied to the skin. Because skin is such a complicated organ, the technology could be a helpful for developing transdermal drugs.

The study’s findings were published April 28, 2014, in the Journal of the American Chemical Society. Stanford University (Stanford, CA, USA) chemistry Profs. Richard N. Zare and Justin Du Bois, postdoc Livia S. Eberlin, graduate student John V. Mulcahy, and colleagues revealed that desorption electrospray ionization-mass spectrometry (DESI-MS) imaging has many advantages over other approaches that require complicated preparation of skin samples.

Moreover, DESI-MS imaging can be performed under ambient settings, instead of in a vacuum condition, as other MS methods require. Furthermore, test compounds do not have to be radioactively labeled or tagged with unwieldy dye molecules that could affect the compounds’ normal migration through skin. “That’s why this method is very appealing,” said Mark R. Prausnitz, a chemical and biomolecular engineering professor who heads the Laboratory for Drug Delivery at Georgia Institute of Technology (Atlanta, GA, USA).

DESI-MS was developed 10 years ago and involves spraying charged solvent droplets at a surface. Backsplash droplets containing dissolved molecules are then captured and examined using a mass spectrometer. The technology has been used for medical applications such as imaging drugs in tissue samples.

The Stanford scientists chose a number of small molecules that change sodium channels in skin cells, including lidocaine and a shellfish toxin. They applied them to the surface of skin samples and were able to track the compounds’ migration to a depth of 1.2 mm.

Such studies of drug migration are required to enlarge the limited selection of transdermal drugs, according to Prof. Prausnitz. Only approximately 30 agents, such as nicotine, have transdermal versions. The drugs must be small, lipophilic, and effective at a low dose. With this newly adapted tool, however, scientists could more readily study methods to enhance skin permeation, Prof. Prausnitz reported. “We’re very interested in the pathway--which part of the skin did the drug go through?”

Related Links:

Stanford University



Channels

Drug Discovery

view channel
Image: Star-like glial cells in red surround alpha-beta plaques in the cortex of a mouse with a model of Alzheimer\'s disease (Photo courtesy of Strittmatter laboratory/Yale University).

Experimental Cancer Drug Reverses Symptoms in Mouse Model of Alzheimer's Disease

An experimental, but clinically disappointing drug for treatment of cancer has been found to be extremely effective in reversing the symptoms of Alzheimer's disease (AD) in a mouse model.... Read more

Biochemistry

view channel
Image:  Model depiction of a novel cellular mechanism by which regulation of cryptochromes Cry1 and Cry2 enables coordination of a protective transcriptional response to DNA damage caused by genotoxic stress (Photo courtesy of the journal eLife, March 2015, Papp SJ, Huber AL, et al.).

Two Proteins Critical for Circadian Cycles Protect Cells from Mutations

Scientists have discovered that two proteins critical for maintaining healthy day-night cycles also have an unexpected role in DNA repair and protecting cells against genetic mutations that could lead... Read more

Business

view channel

NanoString and MD Anderson Collaborate on Development of Novel Multi-Omic Expression Profiling Assays for Cancer

The University of Texas MD Anderson Cancer Center (Houston, TX, USA) and NanoString Technologies, Inc. (Seattle, WA, USA) will partner on development of a revolutionary new type of assay—simultaneously profiling gene and protein expression, initially aiming to discover and validate biomarker signatures for immuno-oncology... Read more
 
Copyright © 2000-2015 Globetech Media. All rights reserved.