Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING LLC
GLOBETECH MEDIA
GLOBETECH PUBLISHING LLC

Brown Fat Research Advances with a Ground-Breaking MRI Scan

By BiotechDaily International staff writers
Posted on 05 May 2014
Image: The first MRI scan to show “brown fat” in a living adult could prove to be an essential step towards a new wave of therapies to aid the fight against diabetes and obesity (Photo courtesy of Warwick Medical School).
Image: The first MRI scan to show “brown fat” in a living adult could prove to be an essential step towards a new wave of therapies to aid the fight against diabetes and obesity (Photo courtesy of Warwick Medical School).
A magnetic resonance imaging (MRI) scan is the first to show “brown fat” in a living adult, and could provide vital information for new treatments to aid the fight against diabetes and obesity.

Researchers from Warwick University Medical School (Coventry, UK) and University Hospitals Coventry (UK) and Warwickshire NHS [National Health Service] Trust used MRI-based technology to identify and validate the presence of brown adipose tissue in a living adult.

Brown fat has become a heated subject for scientists because its ability to use energy and burn calories, helping to keep weight in check. Understanding the brown fat tissue and how it can be utilized is of growing interest in the search to help obese individuals or at a high risk of developing diabetes.

Dr. Thomas Barber, from the department of metabolic and vascular health at Warwick Medical School, explained, “This is an exciting area of study that requires further research and discovery. The potential is there for us to develop safe and effective ways of activating this brown fat to promote weight loss and increase energy expenditure--but we need more data to be able to get to that point. This particular proof of concept is key, as it allows us to pursue MRI techniques in future assessments and gather this required information.”

The study published January 2014 in the Journal of Clinical Endocrinology and Metabolism described the advantages of using MRI scans over the existing method of positron emission tomography (PET). While PET imaging reveals brown fat activity, it is subject to a range of limitations including the challenge of signal variability from a changing environmental temperature.

In contrast to the PET data, which only displays activity, MRI can show brown fat content whether active or not, providing a detailed insight into where it can be found in the adult body. These data could become vital in the development of future therapies that seek to activate deposits of brown fat.

Dr. Barber added, “The MRI allows us to distinguish between the brown fat, and the more well-known white fat that people associate with weight gain, due to the different water to fat ratio of the two tissue types. We can use the scans to highlight what we term ‘regions of interest’ that can help us to build a picture of where the brown fat is located.”

With the proof of concept study now completed, the next phase of research is to further corroborate this technique across a larger group of adults.

Related Links:

Warwick University Medical School
University Hospitals Coventry



Channels

Genomics/Proteomics

view channel
Image: An adult cardiomyocyte has re-entered the cell cycle after expression of miR302-367 (Photo courtesy of the laboratory of Dr. Edward Morrisey, University of Pennsylvania).

Certain MicroRNAs Stimulate Regeneration of Adult Heart Tissue

Cardiac disease researchers working with a mouse model have discovered that by inducing a subset of microRNAs (miRNAs) that are active during development but silenced in the adult they could cause damaged... Read more

Drug Discovery

view channel
Image: Wafers like the one shown here are used to create “organ-on-a-chip” devices to model human tissue (Photo courtesy of Dr. Anurag Mathur, University of California, Berkeley).

Human Heart-on-a-Chip Cultures May Replace Animal Models for Drug Development and Safety Screening

Human heart cells growing in an easily monitored silicon chip culture system may one day replace animal-based model systems for drug development and safety screening. Drug discovery and development... Read more

Biochemistry

view channel
Image:  Model depiction of a novel cellular mechanism by which regulation of cryptochromes Cry1 and Cry2 enables coordination of a protective transcriptional response to DNA damage caused by genotoxic stress (Photo courtesy of the journal eLife, March 2015, Papp SJ, Huber AL, et al.).

Two Proteins Critical for Circadian Cycles Protect Cells from Mutations

Scientists have discovered that two proteins critical for maintaining healthy day-night cycles also have an unexpected role in DNA repair and protecting cells against genetic mutations that could lead... Read more

Business

view channel

“Softer” Mass Spec Techniques Gain Advantage in Biomarker Discovery

Two mass spectrometry (MS) technologies, MALDI and DESI, are increasing in applications as their effectiveness is established, according to Kalorama Information (New York, NY, USA) in its report “Proteomics Markets for Research and IVD Applications (Mass Spectrometry, Chromatography, Microarrays, Electrophoresis, Immunoassays,... Read more
 
Copyright © 2000-2015 Globetech Media. All rights reserved.