Features | Partner Sites | Information | LinkXpress
Sign In
JIB
BioConferenceLive
GLOBETECH PUBLISHING

NMR Spectroscopy Nature Bank Creates Limitless Opportunities for Drug Discovery

By BiotechDaily International staff writers
Posted on 28 Apr 2014
Australian researchers have developed a new tool for finding natural compounds that could form the foundation of innovative therapeutic agents. 

The corresponding author, Prof. Ronald Quinn AM from Griffith University’s Eskitis Institute for Drug Discovery (Brisbane, Australia), reported that testing the new process on a marine sponge had delivered not only validation that the system is successful, but also a potential lead in the fight against Parkinson’s disease. “We have found a new screening method which allows us to identify novel molecules drawn from nature to test for biological activity,” Prof. Quinn said. “As it happens, the first new compound we discovered through this process has demonstrated a response in Parkinson’s disease cells.” 

The findings were published online April 15, 2014, in the chemistry journal Angewandte Chemie. The first author Dr. Tanja Grkovic said the screening process involves nuclear magnetic resonance (NMR) spectroscopy; a highly sensitive instrument through which it is possible to see natural products weighing as little as 20 micrograms. “When you are searching for nature-derived molecules, the jackpot is finding something that nobody has ever seen before and rather than just a variation on a known theme,” Dr. Grkovic said. “We began the project by selecting 20 marine sponge samples randomly from Griffith’s Nature Bank facility and using the NMR technique trying to visualize all the small molecules which could meet the requirements for a potential new drug. “The idea was to look at patterns of data and identify unusual or unique sets. We followed one such pattern and isolated a natural product with a novel skeleton which has turned out to be a molecule which was completely unknown previously.” 

Griffith’s Nature Bank is a novel drug discovery resource based on natural products found in China, Australia, and Papua New Guinea. It comprises more than 45,000 samples of plants and marine invertebrates, 200,000 semipurified fractions, 3,250 pure compounds and over 600 naturally occurring fragments. 

This NMR screening process provides a new way of searching all those natural samples stored in Nature Bank and uncovering the potential biological activity of the compounds within them. 

Deputy director of the Eskitis Institute and coauthor of the paper, Assoc. Prof. George Mellick, is a specialist researcher in neurodegenerative diseases such as Parkinson’s disease. He is excitied by the research prospects this new molecule may provide. “What is very intriguing about this novel natural product is that, while we have found it has an effect on cells sourced from a Parkinson’s patient, it showed a different biological activity on cells from healthy individuals,” Assoc. Prof. Mellick said. “This provides us with a new tool to study the fundamental biology of Parkinson's and to get a better understanding of the cellular processes involved in the development of this disease.” 

The Parkinson’s response is only the beginning, according to the scientists. “This new research technique opens the door to unlimited opportunities, both in terms of chemistry and biology research at Eskitis, as we continue the search for new therapies against disease,” Prof. Quinn said.

Related Links:

Griffith University’s Eskitis Institute for Drug Discovery
 


comments powered by Disqus

Channels

Genomics/Proteomics

view channel
Image: Blocking the activity of HSP101 may imprison the malaria parasite inside its protective vacuole within the red blood cell. In the electron micrograph, the malaria parasites appear in blue and uninfected red blood cells are shown in red (Photo courtesy of the [US] National Institute of Allergy and Infectious Diseases).

Heat Shock Protein Plays Critical Role in Malaria Parasite Protein Trafficking

A pair of recent papers described the molecular operators that enable the malaria parasite Plasmodium falciparum to export a large variety of proteins across the parasitophorous vacuolar membrane (PVM)... Read more

Drug Discovery

view channel
Image: Molecular rendering of the crystal structure of parkin (Photo courtesy of Wikimedia Commons).

Cinnamon Feeding Blocks Development of Parkinson's Disease in Mouse Model

A team of neurological researchers has identified a molecular mechanism by which cinnamon acts to protect neurons from damage caused by Parkinson's disease (PD) in a mouse model of the syndrome.... Read more

Therapeutics

view channel
Image: This type of electronic pacemaker could become obsolete if induction of biological pacemaker cells by gene therapy proves successful (Photo courtesy of Wikimedia Commons).

Gene Therapy Induces Functional Pacemaker Cells in Pig Heart Failure Model

Cardiovascular disease researchers working with a porcine heart failure model have demonstrated the practicality of using gene therapy to replace implanted electronic pacemakers to regulate heartbeat.... Read more

Business

view channel

Cancer Immunotherapy Sector Predicted to Surge to USD 9 Billion Across Major Pharma Through 2022

The immunotherapy market will experience substantial growth through 2022, increasing from USD 1.1 billion in 2012 to nearly USD 9 billion in 2022 (corresponding to 23.8% annual growth) in the United Kingdom, United States, France, Germany, Italy, Spain, and Japan, according to recent market research. This notable growth... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.