Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Events

10 May 2016 - 16 May 2016
11 May 2016 - 13 May 2016

Cancer Cells 3D Printed to Mimic Tumors

By BiotechDaily International staff writers
Posted on 24 Apr 2014
Print article
Image: The model consists of a grid structure, 10 mm in width and length, made from gelatin, alginate and fibrin, which recreates the fibrous proteins that make up the extracellular matrix of a tumor (Photo courtesy of Institute of Physics (IOP) Publishing).
Image: The model consists of a grid structure, 10 mm in width and length, made from gelatin, alginate and fibrin, which recreates the fibrous proteins that make up the extracellular matrix of a tumor (Photo courtesy of Institute of Physics (IOP) Publishing).
A group of Chinese and American researchers have successfully created a three-dimensional (3D) model of a cancerous tumor using a 3D printer.

The model, which consists of a scaffold of fibrous proteins coated in cervical cancer cells, has provided an accurate 3D representation of a tumor’s environment and could help in the discovery of new drugs and cast new light on how tumors develop, grow, and metastasize throughout the body.

The study’s findings were published April 11, 2014, in the Institute of Physics (IOP) Publishing’s journal Biofabrication. The model consists of a grid structure, 10 mm in width and length, composed of gelatin, alginate, and fibrin, which recreates the fibrous proteins that make up the extracellular matrix of a tumor.

The grid structure is coated in Hela cells—an unusual, “immortal” cell line that was first derived from a cervical cancer patient in 1951. Because the cells’ ability to divide forever in a laboratory setting, the cell line has been used in some of the most substantial scientific studies of the past 50 years.

Although the most effective approach to studying tumors is to do so in a clinical trial, ethical and safety restrictions make it hard for these types of studies to be performed on a wide scale. To overcome this, 2D models, consisting of a single layer of cells, have been created to mimic the physiologic environment of tumors so that different types of drugs can be evaluated in a realistic manner. With the dawn of 3D printing, it is now possible to provide a more realistic representation of the environment surrounding a tumor, which the researchers have demonstrated in this study by comparing results from their 3D model with results from a 2D model.

In addition to assessing if the cells remained viable (alive) after printing, the researchers also examined how the cells proliferated, how they expressed a specific set of proteins, and how resistant they were to anticancer agents. The proteins examined were part of the matrix metalloproteinases (MMP) protein family. These proteins are used by cancer cells to break through their surrounding matrix and help tumors to spread. Resistance to anticancer drugs, which was also studied, is a good indicator of tumor malignancy.

The findings revealed that 90% of the cancer cells remained viable after the printing process. The findings also demonstrated that the 3D model had more similar characteristics to a tumor compared to 2D models and in the 3D model the cancer cells showed a higher proliferation rate, higher protein expression and higher resistance to anticancer drugs.

The lead author of the research, Prof. Wei Sun, from Tsinghua University (Beijing, China), and Drexel University (Philadelphia, PA, USA), said, “We have provided a scalable and versatile 3D cancer model that shows a greater resemblance to natural cancer than 2D cultured cancer cells. With further understanding of these 3D models, we can use them to study the development, invasion, metastasis and treatment of cancer using specific cancer cells from patients. We can also use these models to test the efficacy and safety of new cancer treatment therapies and new cancer drugs.”

Related Links:

Tsinghua University
Drexel University



Print article

Channels

Genomics/Proteomics

view channel
Image: An expression of NOTCH 1 (green color) in ACC stem cells (Photo courtesy of Yale University).

Adenoid Cystic Carcinoma Stem Cells Depend on NOTCH1 and SOX10 Signaling

Cancer researchers have isolated a stem cell population from the cells making up an adenoid cystic carcinoma (ACC) tumor and showed that the signaling factors NOTCH1 and SOX10 were essential for the cancer... Read more

Drug Discovery

view channel

Experimental Small-Molecule Anticancer Drug Blocks RAS-binding Domains

The experimental small-molecule anticancer drug rigosertib was shown to block tumor growth by acting as an RAS-mimetic and interacting with the RAS binding domains of RAF kinases, resulting in their inability to bind to RAS, which inhibited the RAS-RAF-MEK pathway. Oncogenic activation of RAS genes due to point mutations... Read more

Biochemistry

view channel
Image: A space-filling model of the anticonvulsant drug carbamazepine (Photo courtesy of Wikimedia Commons).

Wastewater May Contaminate Crops with Potentially Dangerous Pharmaceuticals

Reclaimed wastewater used to irrigate crops is contaminated with pharmaceutical residues that can be detected in the urine of those who consumed such produce. Investigators at the Hebrew University... Read more

Business

view channel

European Biotech Agreement to Promote Antigen-Drug Conjugation Technology

Two European biotech companies have joined forces to exploit and commercialize an innovative, site-specific ADC (antigen-drug conjugate) conjugation technology. ProBioGen (Berlin, Germany), a company specializing in the development and manufacture of complex glycoproteins and Eucodis Bioscience (Vienna, Austria), a... Read more
Copyright © 2000-2016 Globetech Media. All rights reserved.