Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC
GLOBETECH MEDIA

Cancer Cells 3D Printed to Mimic Tumors

By BiotechDaily International staff writers
Posted on 24 Apr 2014
Image: The model consists of a grid structure, 10 mm in width and length, made from gelatin, alginate and fibrin, which recreates the fibrous proteins that make up the extracellular matrix of a tumor (Photo courtesy of Institute of Physics (IOP) Publishing).
Image: The model consists of a grid structure, 10 mm in width and length, made from gelatin, alginate and fibrin, which recreates the fibrous proteins that make up the extracellular matrix of a tumor (Photo courtesy of Institute of Physics (IOP) Publishing).
A group of Chinese and American researchers have successfully created a three-dimensional (3D) model of a cancerous tumor using a 3D printer.

The model, which consists of a scaffold of fibrous proteins coated in cervical cancer cells, has provided an accurate 3D representation of a tumor’s environment and could help in the discovery of new drugs and cast new light on how tumors develop, grow, and metastasize throughout the body.

The study’s findings were published April 11, 2014, in the Institute of Physics (IOP) Publishing’s journal Biofabrication. The model consists of a grid structure, 10 mm in width and length, composed of gelatin, alginate, and fibrin, which recreates the fibrous proteins that make up the extracellular matrix of a tumor.

The grid structure is coated in Hela cells—an unusual, “immortal” cell line that was first derived from a cervical cancer patient in 1951. Because the cells’ ability to divide forever in a laboratory setting, the cell line has been used in some of the most substantial scientific studies of the past 50 years.

Although the most effective approach to studying tumors is to do so in a clinical trial, ethical and safety restrictions make it hard for these types of studies to be performed on a wide scale. To overcome this, 2D models, consisting of a single layer of cells, have been created to mimic the physiologic environment of tumors so that different types of drugs can be evaluated in a realistic manner. With the dawn of 3D printing, it is now possible to provide a more realistic representation of the environment surrounding a tumor, which the researchers have demonstrated in this study by comparing results from their 3D model with results from a 2D model.

In addition to assessing if the cells remained viable (alive) after printing, the researchers also examined how the cells proliferated, how they expressed a specific set of proteins, and how resistant they were to anticancer agents. The proteins examined were part of the matrix metalloproteinases (MMP) protein family. These proteins are used by cancer cells to break through their surrounding matrix and help tumors to spread. Resistance to anticancer drugs, which was also studied, is a good indicator of tumor malignancy.

The findings revealed that 90% of the cancer cells remained viable after the printing process. The findings also demonstrated that the 3D model had more similar characteristics to a tumor compared to 2D models and in the 3D model the cancer cells showed a higher proliferation rate, higher protein expression and higher resistance to anticancer drugs.

The lead author of the research, Prof. Wei Sun, from Tsinghua University (Beijing, China), and Drexel University (Philadelphia, PA, USA), said, “We have provided a scalable and versatile 3D cancer model that shows a greater resemblance to natural cancer than 2D cultured cancer cells. With further understanding of these 3D models, we can use them to study the development, invasion, metastasis and treatment of cancer using specific cancer cells from patients. We can also use these models to test the efficacy and safety of new cancer treatment therapies and new cancer drugs.”

Related Links:

Tsinghua University
Drexel University



Channels

Drug Discovery

view channel
Image: Star-like glial cells in red surround alpha-beta plaques in the cortex of a mouse with a model of Alzheimer\'s disease (Photo courtesy of Strittmatter laboratory/Yale University).

Experimental Cancer Drug Reverses Symptoms in Mouse Model of Alzheimer's Disease

An experimental, but clinically disappointing drug for treatment of cancer has been found to be extremely effective in reversing the symptoms of Alzheimer's disease (AD) in a mouse model.... Read more

Biochemistry

view channel
Image:  Model depiction of a novel cellular mechanism by which regulation of cryptochromes Cry1 and Cry2 enables coordination of a protective transcriptional response to DNA damage caused by genotoxic stress (Photo courtesy of the journal eLife, March 2015, Papp SJ, Huber AL, et al.).

Two Proteins Critical for Circadian Cycles Protect Cells from Mutations

Scientists have discovered that two proteins critical for maintaining healthy day-night cycles also have an unexpected role in DNA repair and protecting cells against genetic mutations that could lead... Read more

Business

view channel

NanoString and MD Anderson Collaborate on Development of Novel Multi-Omic Expression Profiling Assays for Cancer

The University of Texas MD Anderson Cancer Center (Houston, TX, USA) and NanoString Technologies, Inc. (Seattle, WA, USA) will partner on development of a revolutionary new type of assay—simultaneously profiling gene and protein expression, initially aiming to discover and validate biomarker signatures for immuno-oncology... Read more
 
Copyright © 2000-2015 Globetech Media. All rights reserved.