Features Partner Sites Information LinkXpress
Sign In
Demo Company

Light-Activated Neurons Restore Function to Paralyzed Muscles

By BiotechDaily International staff writers
Posted on 14 Apr 2014
Print article
Image: Diagram showing how the system works (Photo courtesy of Barney Bryson, UCL).
Image: Diagram showing how the system works (Photo courtesy of Barney Bryson, UCL).
A new approach has been developed to synthetically control muscles using light, with the hope of restoring function to muscles paralyzed by disorders such as spinal cord injury and motor neuron disease.

The technique involves transplanting specially-designed motor neurons created from stem cells into damaged nerve branches. These motor neurons are devised to react to pulses of blue light, allowing researches to customize muscle control by adjusting the duration, intensity, and frequency of the light pulses.

In the study published April 2014 in Science, scientists from University College London (UCL; UK) and King’s College London (UK) demonstrated the technology in lab mice in which the nerves that supply muscles in the hind legs were injured. They showed that the transplanted stem cell-derived motor neurons grew along the injured nerves to connect effectively with the paralyzed muscles, which could then be controlled by pulses of blue light.

“Following the new procedure, we saw previously paralyzed leg muscles start to function,” noted Prof. Linda Greensmith of the MRC Center for Neuromuscular Diseases at UCL’s Institute of Neurology, who co-led the study. “This strategy has significant advantages over existing techniques that use electricity to stimulate nerves, which can be painful and often results in rapid muscle fatigue. Moreover, if the existing motor neurons are lost due to injury or disease, electrical stimulation of nerves is rendered useless as these too are lost.”

Muscles are typically controlled by motor neurons, which are specialized nerve cells within the brain and spinal cord. These neurons relay signals from the brain to muscles to initiate motor functions such as walking, standing and even breathing. However, motor neurons can become damaged in motor neuron disease or following spinal cord injuries, causing permanent loss of muscle function resulting in paralysis.

“This new technique represents a means to restore the function of specific muscles following paralyzing neurological injuries or disease,” clarified Prof. Greensmith. “Within the next five years or so, we hope to undertake the steps that are necessary to take this ground-breaking approach into human trials, potentially to develop treatments for patients with motor neuron disease, many of whom eventually lose the ability to breathe, as their diaphragm muscles gradually become paralyzed. We eventually hope to use our method to create a sort of optical pacemaker for the diaphragm to keep these patients breathing.”

The light-responsive motor neurons that made the technique possible were created from stem cells by Dr. Ivo Lieberam of the MRC Center for Developmental Neurobiology, King’s College London. “We custom-tailored embryonic stem cells so that motor neurons derived from them can function as part of the muscle pacemaker device,” said Dr. Lieberam, who co-led the study. “First, we equipped the cells with a molecular light sensor. This enables us to control motor neurons with blue light flashes. We then built a survival gene into them, which helps the stem-cell motor neurons to stay alive when they are transplanted inside the injured nerve and allows them to grow to connect to muscle.”

Related Links:

University College London
King’s College London

Print article



view channel
Image: Left: Green actin fibers create architecture of the cell. Right: With cytochalasin D added, actin fibers disband and reform in the nuclei (Photo courtesy of the University of North Carolina).

Actin in the Nucleus Triggers a Process That Directs Stem Cells to Mature into Bone

A team of cell biologists has discovered why treatment of mesenchymal stem cells (MSCs) with the mycotoxin cytochalasin D directs them to mature into bone cells (osteoblasts) rather than into fat cells... Read more


view channel

Molecular Light Shed on “Dark” Cellular Receptors

Scientists have created a new research tool to help find homes for orphan cell-surface receptors, toward better understanding of cell signaling, developing new therapeutics, and determining causes of drug side-effects. The approach may be broadly useful for discovering interactions of orphan receptors with endogenous, naturally... Read more


view channel

Purchase of Biopharmaceutical Company Will Boost Development of Nitroxyl-Based Cardiovascular Disease Drugs

A major international biopharmaceutical company has announced the acquisition of a private biotech company that specializes in the development of drugs for treatment of cardiovascular disease. Bristol-Myers Squibb Co. (New York, NY, USA) has initiated the process to buy Cardioxyl Pharmaceuticals Inc. (Chapel Hill, NC, USA).... Read more
Copyright © 2000-2015 Globetech Media. All rights reserved.