Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH MEDIA
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC

Light-Activated Neurons Restore Function to Paralyzed Muscles

By BiotechDaily International staff writers
Posted on 14 Apr 2014
Image: Diagram showing how the system works (Photo courtesy of Barney Bryson, UCL).
Image: Diagram showing how the system works (Photo courtesy of Barney Bryson, UCL).
A new approach has been developed to synthetically control muscles using light, with the hope of restoring function to muscles paralyzed by disorders such as spinal cord injury and motor neuron disease.

The technique involves transplanting specially-designed motor neurons created from stem cells into damaged nerve branches. These motor neurons are devised to react to pulses of blue light, allowing researches to customize muscle control by adjusting the duration, intensity, and frequency of the light pulses.

In the study published April 2014 in Science, scientists from University College London (UCL; UK) and King’s College London (UK) demonstrated the technology in lab mice in which the nerves that supply muscles in the hind legs were injured. They showed that the transplanted stem cell-derived motor neurons grew along the injured nerves to connect effectively with the paralyzed muscles, which could then be controlled by pulses of blue light.

“Following the new procedure, we saw previously paralyzed leg muscles start to function,” noted Prof. Linda Greensmith of the MRC Center for Neuromuscular Diseases at UCL’s Institute of Neurology, who co-led the study. “This strategy has significant advantages over existing techniques that use electricity to stimulate nerves, which can be painful and often results in rapid muscle fatigue. Moreover, if the existing motor neurons are lost due to injury or disease, electrical stimulation of nerves is rendered useless as these too are lost.”

Muscles are typically controlled by motor neurons, which are specialized nerve cells within the brain and spinal cord. These neurons relay signals from the brain to muscles to initiate motor functions such as walking, standing and even breathing. However, motor neurons can become damaged in motor neuron disease or following spinal cord injuries, causing permanent loss of muscle function resulting in paralysis.

“This new technique represents a means to restore the function of specific muscles following paralyzing neurological injuries or disease,” clarified Prof. Greensmith. “Within the next five years or so, we hope to undertake the steps that are necessary to take this ground-breaking approach into human trials, potentially to develop treatments for patients with motor neuron disease, many of whom eventually lose the ability to breathe, as their diaphragm muscles gradually become paralyzed. We eventually hope to use our method to create a sort of optical pacemaker for the diaphragm to keep these patients breathing.”

The light-responsive motor neurons that made the technique possible were created from stem cells by Dr. Ivo Lieberam of the MRC Center for Developmental Neurobiology, King’s College London. “We custom-tailored embryonic stem cells so that motor neurons derived from them can function as part of the muscle pacemaker device,” said Dr. Lieberam, who co-led the study. “First, we equipped the cells with a molecular light sensor. This enables us to control motor neurons with blue light flashes. We then built a survival gene into them, which helps the stem-cell motor neurons to stay alive when they are transplanted inside the injured nerve and allows them to grow to connect to muscle.”

Related Links:

University College London
King’s College London



Channels

Genomics/Proteomics

view channel
Image: The photo shows a mouse pancreatic islet as seen by light microscopy. Beta cells can be recognized by the green insulin staining. Glucagon is labeled in red and the nuclei in blue (Photo courtesy of Wikimedia Commons).

Regenerative Potential Is a Trait of Mature Tissues, Not an Innate Feature of Newly Born Cells

Diabetes researchers have found that the ability of insulin-producing beta cells to replicate and respond to elevated glucose concentrations is absent in very young animals and does not appear until after weaning.... Read more

Drug Discovery

view channel
Image: Wafers like the one shown here are used to create “organ-on-a-chip” devices to model human tissue (Photo courtesy of Dr. Anurag Mathur, University of California, Berkeley).

Human Heart-on-a-Chip Cultures May Replace Animal Models for Drug Development and Safety Screening

Human heart cells growing in an easily monitored silicon chip culture system may one day replace animal-based model systems for drug development and safety screening. Drug discovery and development... Read more

Biochemistry

view channel
Image:  Model depiction of a novel cellular mechanism by which regulation of cryptochromes Cry1 and Cry2 enables coordination of a protective transcriptional response to DNA damage caused by genotoxic stress (Photo courtesy of the journal eLife, March 2015, Papp SJ, Huber AL, et al.).

Two Proteins Critical for Circadian Cycles Protect Cells from Mutations

Scientists have discovered that two proteins critical for maintaining healthy day-night cycles also have an unexpected role in DNA repair and protecting cells against genetic mutations that could lead... Read more

Business

view channel

Roche Acquires Signature Diagnostics to Advance Translational Research

Roche (Basel, Switzerland) will advance translational research for next generation sequencing (NGS) diagnostics by leveraging the unique expertise of Signature Diagnostics AG (Potsdam, Germany) in biobanks and development of novel NGS diagnostic assays. Signature Diagnostics is a privately held translational oncology... Read more
 
Copyright © 2000-2015 Globetech Media. All rights reserved.