Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING LLC
GLOBETECH MEDIA
GLOBETECH PUBLISHING LLC

Live Cell Imaging Ready to Transform Disease Diagnostics and Drug Discovery

By BiotechDaily International staff writers
Posted on 31 Mar 2014
Breakthroughs in fluorescent applications, electronics, optics, and molecular biology have made live cell imaging technologies more accessible to life scientists trying to better understand biologic dynamics and visualize cellular events in living organisms, according to recent market research. The introduction of “omics” technologies and nanotechnologies into mainstream medicine has already enabled commercial lab-on-a-chip microfluidics systems that analyze cells, DNA, RNA, and proteins. As live cell imaging evolves, it will become a key player in disease diagnostics and drug discovery processes.

New analysis from Frost & Sullivan (Mountain View, CA, USA), an international growth consultancy company, found that live cell imaging technologies will have a large number of niche applications in cancer research, cell biology, developmental biology, and neuroscience. Currently available technologies include live cell-based tests systems and molecular models including high-resolution imaging systems.

“The principal challenges to successful live cell imaging are microscopic settings optimization, fluorescent components selection, and culture environment maintenance,” said technical insights senior research analyst Cecilia Van Cauwenberghe. “Parallel advances in the field of cell culturing will also be critical to ensure accurate, real-time results.”

Utilizing live cell imaging along with fixed cell tests before the former totally replaces the latter, will lower costs and lessen throughput times. Equipment combining microscopes with cell culture incubators is already being marketed, facilitating affordable three-dimensional (3D), real-time assessment, multiplexing, and automation capabilities.

Tightly integrated systems can provide new benchmarks of precision and degrees of efficiency for the study of individual and small groups of live cells. They will enable innovative new ways for multiple cell analysis, simultaneous processing, and multi-day time lapse live cell imaging. However, it is essential that government patent systems protect these innovations, especially since new players in the market emerge from different start points. Similarly, measures must be taken to reduce uncertainty regarding reimbursements, and to establish frameworks assuring balance among tier I companies, small and medium enterprises, and start-ups developing innovative technologies.

“Intellectual property regimes promoting integration between academia and industry in order to deliver new solutions are necessary,” concluded Ms. Cauwenberghe. “Drug producers must collaborate with other stakeholders to translate live cell imaging innovations into clinically meaningful tests that can be used for diagnosis, prognosis and drug development.”

Related Links:

Frost & Sullivan



Channels

Genomics/Proteomics

view channel
Image: The bone marrow of mice with normal ether lipid production (top) contains more white blood cells than are found in the bone marrow of mice with ether lipid deficiency (bottom) (Photo courtesy of Washington University School of Medicine).

Inactivating Fatty Acid Synthase Reduces Inflammation by Interfering with Neutrophil Membrane Function

The enzyme fatty acid synthase (FAS) was shown to regulate inflammation by sustaining neutrophil viability through modulation of membrane phospholipid composition. Neutrophils are the most abundant... Read more

Drug Discovery

view channel
Image: Researchers have attached two drugs—TRAIL and Dox—onto graphene strips. TRAIL is most effective when delivered to the external membrane of a cancer cell, while Dox is most effective when delivered to the nucleus, so the researchers designed the system to deliver the drugs sequentially, with each drug hitting a cancer cell where it will do the most damage (Photo courtesy of Dr. Zhen Gu, North Carolina State University).

Anticancer Drug Delivery System Utilizes Graphene Strip Transporters

The ongoing search by cancer researchers for targeted drug delivery systems has generated a novel approach that uses graphene strips to transport simultaneously the anticancer agents TRAIL (tumor necrosis... Read more

Biochemistry

view channel

Blocking Enzyme Switch Turns Off Tumor Growth in T-Cell Acute Lymphoblastic Leukemia

Researchers recently reported that blocking the action of an enzyme “switch” needed to activate tumor growth is emerging as a practical strategy for treating T-cell acute lymphoblastic leukemia. An estimated 25% of the 500 US adolescents and young adults diagnosed yearly with this aggressive disease fail to respond to... Read more

Therapeutics

view channel
Image: Cancer cells infected with tumor-targeted oncolytic virus (red). Green indicates alpha-tubulin, a cell skeleton protein. Blue is DNA in the cancer cell nuclei (Photo courtesy of Dr. Rathi Gangeswaran, Bart’s Cancer Institute).

Innovative “Viro-Immunotherapy” Designed to Kill Breast Cancer Cells

A leading scientist has devised a new treatment that employs viruses to kill breast cancer cells. The research could lead to a promising “viro-immunotherapy” for patients with triple-negative breast cancer,... Read more

Business

view channel

Biotech Acquisition Designed to Accelerate the Development and Marketing of Immunosequencing Applications

Adaptive Biotechnologies Corp. (Seattle, WA, USA), a developer of next-generation sequencing (NGS) to profile T-cell and B-cell receptors, has acquired of Sequenta, Inc. (South San Francisco, CA, USA), which is expected to expedite and expand the use of innovative immunosequencing technology for researchers and clinicians... Read more
 
Copyright © 2000-2015 Globetech Media. All rights reserved.