Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Events

06 Jun 2016 - 09 Jun 2016
22 Jun 2016 - 24 Jun 2016
04 Jul 2016 - 06 Jul 2016

Live Cell Imaging Ready to Transform Disease Diagnostics and Drug Discovery

By BiotechDaily International staff writers
Posted on 31 Mar 2014
Print article
Breakthroughs in fluorescent applications, electronics, optics, and molecular biology have made live cell imaging technologies more accessible to life scientists trying to better understand biologic dynamics and visualize cellular events in living organisms, according to recent market research. The introduction of “omics” technologies and nanotechnologies into mainstream medicine has already enabled commercial lab-on-a-chip microfluidics systems that analyze cells, DNA, RNA, and proteins. As live cell imaging evolves, it will become a key player in disease diagnostics and drug discovery processes.

New analysis from Frost & Sullivan (Mountain View, CA, USA), an international growth consultancy company, found that live cell imaging technologies will have a large number of niche applications in cancer research, cell biology, developmental biology, and neuroscience. Currently available technologies include live cell-based tests systems and molecular models including high-resolution imaging systems.

“The principal challenges to successful live cell imaging are microscopic settings optimization, fluorescent components selection, and culture environment maintenance,” said technical insights senior research analyst Cecilia Van Cauwenberghe. “Parallel advances in the field of cell culturing will also be critical to ensure accurate, real-time results.”

Utilizing live cell imaging along with fixed cell tests before the former totally replaces the latter, will lower costs and lessen throughput times. Equipment combining microscopes with cell culture incubators is already being marketed, facilitating affordable three-dimensional (3D), real-time assessment, multiplexing, and automation capabilities.

Tightly integrated systems can provide new benchmarks of precision and degrees of efficiency for the study of individual and small groups of live cells. They will enable innovative new ways for multiple cell analysis, simultaneous processing, and multi-day time lapse live cell imaging. However, it is essential that government patent systems protect these innovations, especially since new players in the market emerge from different start points. Similarly, measures must be taken to reduce uncertainty regarding reimbursements, and to establish frameworks assuring balance among tier I companies, small and medium enterprises, and start-ups developing innovative technologies.

“Intellectual property regimes promoting integration between academia and industry in order to deliver new solutions are necessary,” concluded Ms. Cauwenberghe. “Drug producers must collaborate with other stakeholders to translate live cell imaging innovations into clinically meaningful tests that can be used for diagnosis, prognosis and drug development.”

Related Links:

Frost & Sullivan



Print article

Channels

Genomics/Proteomics

view channel
Image: A dark field photomicrograph showing the spirochete bacterium Borrelia burgdorferi, the pathogen responsible for causing Lyme disease (Photo courtesy of the CDC).

Statins May Help Block Transmission of Lyme Disease

A recent study found that treatment with cholesterol-lowering statins reduced the number of Borrelia burgdorferi bacteria in rodents, which helped to block transmission of Lyme disease. Lyme disease... Read more

Drug Discovery

view channel

Experimental Small-Molecule Anticancer Drug Blocks RAS-binding Domains

The experimental small-molecule anticancer drug rigosertib was shown to block tumor growth by acting as an RAS-mimetic and interacting with the RAS binding domains of RAF kinases, resulting in their inability to bind to RAS, which inhibited the RAS-RAF-MEK pathway. Oncogenic activation of RAS genes due to point mutations... Read more

Biochemistry

view channel
Image: A space-filling model of the anticonvulsant drug carbamazepine (Photo courtesy of Wikimedia Commons).

Wastewater May Contaminate Crops with Potentially Dangerous Pharmaceuticals

Reclaimed wastewater used to irrigate crops is contaminated with pharmaceutical residues that can be detected in the urine of those who consumed such produce. Investigators at the Hebrew University... Read more

Business

view channel

European Biotech Agreement to Promote Antigen-Drug Conjugation Technology

Two European biotech companies have joined forces to exploit and commercialize an innovative, site-specific ADC (antigen-drug conjugate) conjugation technology. ProBioGen (Berlin, Germany), a company specializing in the development and manufacture of complex glycoproteins and Eucodis Bioscience (Vienna, Austria), a... Read more
Copyright © 2000-2016 Globetech Media. All rights reserved.