Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING
JIB
GLOBETECH PUBLISHING

Scientists “Herd” Cells with Electrical Currents in Tissue Engineering Application

By BiotechDaily International staff writers
Posted on 25 Mar 2014
Image: The top image shows a patch of epithelial cells. The white lines in the middle image mark the electric current flowing from positive to negative over the cells. The bottom image shows how the cells track the electric field, with blue indicating leftward migration and red signaling rightward movement (Photo courtesy of Daniel Cohen, UC Berkeley).
Image: The top image shows a patch of epithelial cells. The white lines in the middle image mark the electric current flowing from positive to negative over the cells. The bottom image shows how the cells track the electric field, with blue indicating leftward migration and red signaling rightward movement (Photo courtesy of Daniel Cohen, UC Berkeley).
Researchers discovered that an electrical current can be used to organize the flow of a collection of cells, an achievement that could provide more controlled ways of tissue engineering and for possible applications such as “smart bandages” that use electrical stimulation to help heal wounds.

In the research, published March 9, 2014, in the journal Nature Materials, the University of California (UC) Berkeley (USA) researchers used single layers of epithelial cells, the type of cells that adhere together to form strong sheathes in the cornea, skin, kidneys, and other organs. They found that by applying an electric current of about five volts per centimeter, they could encourage cells to move along the direct current electric field.

The scientists were able to force the cells swarm left or right, to diverge or converge and to make collective U-turns. They also created intricate shapes, such as a triceratops and the UC Berkeley Cal bear mascot, to explore how the population and configuration of cell sheets affect migration.

“This is the first data showing that direct current fields can be used to deliberately guide migration of a sheet of epithelial cells,” said study lead author Dr. Daniel Cohen, who did this work as a student in the UC Berkeley-UC San Francisco Joint Graduate Program in Bioengineering. “There are many natural systems whose properties and behaviors arise from interactions across large numbers of individual parts—sand dunes, flocks of birds, schools of fish, and even the cells in our tissues. Just as a few sheepdogs exert enormous control over the herding behavior of sheep, we might be able to similarly herd biological cells for tissue engineering.”

Galvanotaxis—the use of electricity to direct cell movement—had been earlier demonstrated for individual cells, but how it influences the collective motion of cells was still uncertain. “The ability to govern the movement of a mass of cells has great utility as a scientific tool in tissue engineering,” said study senior author Michel Maharbiz, UC Berkeley associate professor of electrical engineering and computer sciences. “Instead of manipulating one cell at a time, we could develop a few simple design rules that would provide a global cue to control a collection of cells.”

The research was conceived out of a project, led by Dr. Maharbiz, to develop electronic nanomaterials for medical use that was funded by the US National Science Foundation’s Emerging Frontiers in Research and Innovation program. The researchers collaborated with W. James Nelson, professor of molecular and cellular physiology at Stanford University (Stanford, CA, USA) and one of the world’s leading specialists in cell-to-cell adhesion. Dr. Cohen is now a postdoctoral research fellow in Prof. Nelson’s lab.

Living organisms are chockfull of flowing ions and salt solutions, therefore, it is no shock that electrical signals play a big role in human physiology, from neural transmissions to muscle stimulation. “The electrical phenomenon we are exploring is distinct in that the current produced is providing a cue for cells to migrate,” said Dr. Maharbiz.

The study authors are now exploring the function of bioelectrical signals in the wound healing process, building upon the discovery in 1843 that an injury to the body creates a change in the electrical field at the wound site. By mapping the changes in the electrical field when an injury occurs and as it heals, the scientists may be able to develop technology to help speed and enhance the repair process.

“These data clearly demonstrate that the kind of cellular control we would need for a smart bandage might be possible, and the next part of our work will focus on adapting this technology for use in actual injuries,” concluded Dr. Cohen.

Related Links:

University of California Berkeley



comments powered by Disqus

Channels

Drug Discovery

view channel
Image: The European Commission has approved the use of Avastin combined with chemotherapy as a treatment for women with recurrent ovarian cancer (Photo courtesy of Genentech).

Drug for Treatment of Platinum Resistant Recurrent Ovarian Cancer Approved for Use in Europe

For the first time in more than 15 years the European Commission (EC) has approved a new therapeutic option for the most difficult to treat form of ovarian cancer. Ovarian cancer causes more deaths... Read more

Therapeutics

view channel
Image: This type of electronic pacemaker could become obsolete if induction of biological pacemaker cells by gene therapy proves successful (Photo courtesy of Wikimedia Commons).

Gene Therapy Induces Functional Pacemaker Cells in Pig Heart Failure Model

Cardiovascular disease researchers working with a porcine heart failure model have demonstrated the practicality of using gene therapy to replace implanted electronic pacemakers to regulate heartbeat.... Read more

Business

view channel

Global Computational Biology Sector Expected to Reach over USD 4 Billion by 2020

The global market for computational biology is expected to reach USD 4.285 billion by 2020 growing at a compound annual growth rate (CAGR) of 21.1%, according to new market research. Steady surge in the usage and application of computational biology for bioinformatics R&D programs designed for sequencing genomes... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.