Features | Partner Sites | Information | LinkXpress
Sign In
JIB
GLOBETECH PUBLISHING
GLOBETECH PUBLISHING

Scientists “Herd” Cells with Electrical Currents in Tissue Engineering Application

By BiotechDaily International staff writers
Posted on 25 Mar 2014
Image: The top image shows a patch of epithelial cells. The white lines in the middle image mark the electric current flowing from positive to negative over the cells. The bottom image shows how the cells track the electric field, with blue indicating leftward migration and red signaling rightward movement (Photo courtesy of Daniel Cohen, UC Berkeley).
Image: The top image shows a patch of epithelial cells. The white lines in the middle image mark the electric current flowing from positive to negative over the cells. The bottom image shows how the cells track the electric field, with blue indicating leftward migration and red signaling rightward movement (Photo courtesy of Daniel Cohen, UC Berkeley).
Researchers discovered that an electrical current can be used to organize the flow of a collection of cells, an achievement that could provide more controlled ways of tissue engineering and for possible applications such as “smart bandages” that use electrical stimulation to help heal wounds.

In the research, published March 9, 2014, in the journal Nature Materials, the University of California (UC) Berkeley (USA) researchers used single layers of epithelial cells, the type of cells that adhere together to form strong sheathes in the cornea, skin, kidneys, and other organs. They found that by applying an electric current of about five volts per centimeter, they could encourage cells to move along the direct current electric field.

The scientists were able to force the cells swarm left or right, to diverge or converge and to make collective U-turns. They also created intricate shapes, such as a triceratops and the UC Berkeley Cal bear mascot, to explore how the population and configuration of cell sheets affect migration.

“This is the first data showing that direct current fields can be used to deliberately guide migration of a sheet of epithelial cells,” said study lead author Dr. Daniel Cohen, who did this work as a student in the UC Berkeley-UC San Francisco Joint Graduate Program in Bioengineering. “There are many natural systems whose properties and behaviors arise from interactions across large numbers of individual parts—sand dunes, flocks of birds, schools of fish, and even the cells in our tissues. Just as a few sheepdogs exert enormous control over the herding behavior of sheep, we might be able to similarly herd biological cells for tissue engineering.”

Galvanotaxis—the use of electricity to direct cell movement—had been earlier demonstrated for individual cells, but how it influences the collective motion of cells was still uncertain. “The ability to govern the movement of a mass of cells has great utility as a scientific tool in tissue engineering,” said study senior author Michel Maharbiz, UC Berkeley associate professor of electrical engineering and computer sciences. “Instead of manipulating one cell at a time, we could develop a few simple design rules that would provide a global cue to control a collection of cells.”

The research was conceived out of a project, led by Dr. Maharbiz, to develop electronic nanomaterials for medical use that was funded by the US National Science Foundation’s Emerging Frontiers in Research and Innovation program. The researchers collaborated with W. James Nelson, professor of molecular and cellular physiology at Stanford University (Stanford, CA, USA) and one of the world’s leading specialists in cell-to-cell adhesion. Dr. Cohen is now a postdoctoral research fellow in Prof. Nelson’s lab.

Living organisms are chockfull of flowing ions and salt solutions, therefore, it is no shock that electrical signals play a big role in human physiology, from neural transmissions to muscle stimulation. “The electrical phenomenon we are exploring is distinct in that the current produced is providing a cue for cells to migrate,” said Dr. Maharbiz.

The study authors are now exploring the function of bioelectrical signals in the wound healing process, building upon the discovery in 1843 that an injury to the body creates a change in the electrical field at the wound site. By mapping the changes in the electrical field when an injury occurs and as it heals, the scientists may be able to develop technology to help speed and enhance the repair process.

“These data clearly demonstrate that the kind of cellular control we would need for a smart bandage might be possible, and the next part of our work will focus on adapting this technology for use in actual injuries,” concluded Dr. Cohen.

Related Links:

University of California Berkeley



comments powered by Disqus

Channels

Genomics/Proteomics

view channel
Image: Alternative splicing produces two protein isoforms (Photo courtesy of Wikimedia Commons).

Key Regulator of Cancer-Inducing Alternative Splicing Identified

Cancer researchers have identified the splicing factor RBM4 (RNA-binding protein 4) as a key determinant in processes that prevent tumor development and spread. RBM4 is known to be crucial to gene splicing... Read more

Drug Discovery

view channel

Ibuprofen May Restore Immune Function in Older Individuals

New research suggests that macrophages from the lungs of old mice respond differently to infections than those of young mice, and ibuprofen given to the mice reversed these changes. New research using lab mice suggests that the solution to more youthful immune function might already be a common over-the-counter pain reliever.... Read more

Therapeutics

view channel
Image: Hair follicle (blue) being attacked by T cells (green) (Photo courtesy of Christiano Lab/Columbia University Medical Center).

Hair Restoration Method Clones Patients’ Cells to Grow New Hair Follicles

Researchers have developed of a new hair restoration approach that uses a patient’s cells to grow new hair follicles. In addition, the [US] Food and Drugs Administration (FDA) recently approved a new drug... Read more

Business

view channel

Partnership Established to Decode Bowel Disease

23andMe (Mountain View, CA,USA), a personal genetics company, is collaborating with Pfizer, Inc. (New York, NY, USA), in which the companies will seek to enroll 10,000 people with inflammatory bowel disease (IBD) in a research project designed to explore the genetic factors associated with the onset, progression, severity,... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.