Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING LLC
GLOBETECH MEDIA
GLOBETECH PUBLISHING LLC

Six Months of British Cancer Research Organization’s Genetic Data Decoded in One Month by Smartphone Gamers

By BiotechDaily International staff writers
Posted on 23 Mar 2014
In just one month, “citizen scientists” have studied DNA data that would have taken a scientist six months to analyze by eye by playing a new smartphone game Play to Cure: Genes in Space.

If this amount of DNA was stretched out, it would stretch across 65 km. Amazingly, this is a distance equivalent to the length of more than 80 times the height of the Burj Khalifa in Dubai, the world’s tallest building.

These figures follow the February 2014 launch of the playing Cancer Research UK’s (London, UK) novel game, which global gamers of all ages can play on their smartphones and simultaneously analyze gene data. Cancer Research UK’s scientists must interpret huge amounts of information to find cancer-causing genetic defects in develop new targeted therapies for patients. However, the human eye is required to locate patterns in the data--computers are not effective enough. Furthermore, it would take scientists a long time to do this manually—sidetracking their time from other vital research.

But the collective power of the sheer numbers of gamers worldwide have sped this up, and will increase accuracy with many pairs of eyes examining each stretch of DNA. In just one month, there have been 1.5 million classifications through the game from players in almost every country in world. Furthermore, citizen scientists have collectively devoted more than 53,000 hours—six and a half years—playing the game and analyzed approximately 50% of the data from the first research project.

Hannah Keartland, Cancer Research UK's citizen science lead, said, “We’re astounded by this fantastic support from citizen scientists across the world which goes to show—you don’t need to wear a lab coat to be a hero. “It’s crucial we don’t stop here because the more people who play in their spare moments, the quicker we’ll make a difference. There never again needs to be such a thing as a boring queue. It’s still early days but we believe the collective force of global gamers could have a massive impact and speed up our life-saving research.”

Prof. Carlos Caldas, senior group leader at the Cancer Research UK Cambridge Institute, University of Cambridge (UK), said, “We’re incredibly grateful to everyone who is giving their spare moments to help us analyze genetic data. We’re working hard to develop better drugs, improve the diagnosis of cancer patients and understand why some treatments work and others won’t—to spare unpleasant side effects. Computers can’t analyze our research data with 100% accuracy—we need the human eye for greater precision. It can take us years to decode the huge amounts of data generated by research. But with everyone’s help the boost to our work could be enormous.”

The game is available to download now for free for anyone with an Android or Apple Smartphone.

Related Links:

Cancer Research UK 



Channels

Genomics/Proteomics

view channel
Image: Pulsed near infrared light (shown in red) is shone onto a tumor (shown in white) that is encased in blood vessels. The tumor is imaged by photoacoustic tomography via the ultrasound emission (shown in blue) from the gold nanotubes (Photo courtesy of Jing Claussen (iThera Medical, Germany)).

Gold Nanotubes Are Novel Agents for Cancer Diagnosis and Treatment

Cancer researchers have produced a highly defined class of gold nanotubes that are suitable for use in animals as in vivo imaging nanoprobes, photothermal conversion agents, and drug delivery vehicles.... Read more

Drug Discovery

view channel
Image: Molecular model of the protein Saposin C (Photo courtesy of Wikimedia Commons).

Nanovesicles Kill Human Lung Cancer Cells in Culture and in a Mouse Xenograft Model

Nanovesicles assembled from the protein Saposin C (SapC) and the phospholipid dioleoylphosphatidylserine (DOPS) were shown to be potent inhibitors of lung cancer cells in culture and in a mouse xenograft model.... Read more

Biochemistry

view channel

Possible New Target Found for Treating Brain Inflammation

Scientists have identified an enzyme that produces a class of inflammatory lipid molecules in the brain. Abnormally high levels of these molecules appear to cause a rare inherited eurodegenerative disorder, and that disorder now may be treatable if researchers can develop suitable drug candidates that suppress this enzyme.... Read more

Business

view channel

Roche Acquires Signature Diagnostics to Advance Translational Research

Roche (Basel, Switzerland) will advance translational research for next generation sequencing (NGS) diagnostics by leveraging the unique expertise of Signature Diagnostics AG (Potsdam, Germany) in biobanks and development of novel NGS diagnostic assays. Signature Diagnostics is a privately held translational oncology... Read more
 
Copyright © 2000-2015 Globetech Media. All rights reserved.