Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Events

10 May 2016 - 16 May 2016
11 May 2016 - 13 May 2016

Ultrasound Using Microbubble Contrast Agent Provides Way to Visualize Tumors

By BiotechDaily International staff writers
Posted on 10 Feb 2014
Print article
Image:  SFRP2 targeted microbubbles bound specifically to vessels (stained green) within angiosarcoma (right). A control without the targeted microbubbles (left) (Photo courtesy of UNC Health Care).
Image: SFRP2 targeted microbubbles bound specifically to vessels (stained green) within angiosarcoma (right). A control without the targeted microbubbles (left) (Photo courtesy of UNC Health Care).
Whereas ultrasound provides a less expensive and radiation-free way to identify and track cancer in comparison to technologies such as X-rays, computed tomography (CT), and magnetic resonance imaging (MRI) scans, ultrasound has seen limited use in cancer treatment because of its clarity and resolution problems. Nevertheless, researchers have overcome these hurdles by combining ultrasound with a contrast agent composed of tiny bubbles that pair with an antibody that many cancer cells produce at higher levels than do normal cells.

By binding to the protein SFRP2, the microbubble contrast agent greatly improves the resolution and tumor-detecting ability of scans produced by ultrasound. In an article published January 29, 2014, in the journal PLOS ONE, University of North Carolina (UNC) Lineberger Comprehensive Cancer Center (Chapel Hill, NC, USA) members Nancy Klauber-Demore, MD, professor of surgery and Paul Dayton, PhD, professor of biomedical engineering, from the UNC at Chapel Hill School of Medicine (USA) were able to visualize lesions created by angiosarcoma, a malignant cancer that develops on the walls of blood vessels.

“The SFRP2-moleculary targeted contrast agent showed specific visualization of the tumor vasculature,” said Dr. Klauber-DeMore. “In contrast, there was no visualization of normal blood vessels. This suggests that the contrast agent may help distinguish malignant from benign masses found on imaging.”

Dr. Klauber-DeMore’s lab was the first to discover that angiosarcoma cells produce an excess of SFRP2. Building on that discovery, her team focused on how to use the protein to better monitor the progress of the cancer within blood vessels. Using a mouse model, the researchers delivered the microbubble contrast agent by way of intravenous injection and tracked it using ultrasound.

Since SFRP2 is expressed in many cancers, including colon, breast, pancreas, ovarian, and kidney tumors, the technique could potentially be useful on a wide range of cancer types. Dr. Klauber-DeMore reported that her colleagues now want to determine how well the technique works with these other tumor types, as well as studying its effect on breast cancer.

The study’s findings have shown that the level of SFRP2 in tumors increases as tumors develop, so Dr. Klauber-DeMore’s team will in addition examine whether the technique can be used to monitor tumor growth. This would make it helpful in tracking patient response to chemotherapy. They will also investigate whether it can be used to identify and visualize very small tumors.

Because ultrasound is less expensive than commonly used imaging methods, such as MRI, the new technique could help lower costs to patients who need cancer treatment. Moreover, because ultrasound is more portable than other imaging technology, it may be useful in providing treatment in rural and low-resource areas across North Carolina and throughout the United States.

Related Links:

University of North Carolina Lineberger Comprehensive Cancer Center
University of North Carolina at Chapel Hill School of Medicine



Print article

Channels

Genomics/Proteomics

view channel
Image: An expression of NOTCH 1 (green color) in ACC stem cells (Photo courtesy of Yale University).

Adenoid Cystic Carcinoma Stem Cells Depend on NOTCH1 and SOX10 Signaling

Cancer researchers have isolated a stem cell population from the cells making up an adenoid cystic carcinoma (ACC) tumor and showed that the signaling factors NOTCH1 and SOX10 were essential for the cancer... Read more

Drug Discovery

view channel

Experimental Small-Molecule Anticancer Drug Blocks RAS-binding Domains

The experimental small-molecule anticancer drug rigosertib was shown to block tumor growth by acting as an RAS-mimetic and interacting with the RAS binding domains of RAF kinases, resulting in their inability to bind to RAS, which inhibited the RAS-RAF-MEK pathway. Oncogenic activation of RAS genes due to point mutations... Read more

Biochemistry

view channel
Image: A space-filling model of the anticonvulsant drug carbamazepine (Photo courtesy of Wikimedia Commons).

Wastewater May Contaminate Crops with Potentially Dangerous Pharmaceuticals

Reclaimed wastewater used to irrigate crops is contaminated with pharmaceutical residues that can be detected in the urine of those who consumed such produce. Investigators at the Hebrew University... Read more

Lab Technologies

view channel

Huge Modifiable Biomedical Database to Be Available on the Wikidata Site

Genome researchers are exploiting the power of the open Internet community Wikipedia database to create a comprehensive resource for geneticists, molecular biologists, and other interested life scientists. While efficiency in generating scientific data improves almost daily, applying meaningful relationships between... Read more

Business

view channel

European Biotech Agreement to Promote Antigen-Drug Conjugation Technology

Two European biotech companies have joined forces to exploit and commercialize an innovative, site-specific ADC (antigen-drug conjugate) conjugation technology. ProBioGen (Berlin, Germany), a company specializing in the development and manufacture of complex glycoproteins and Eucodis Bioscience (Vienna, Austria), a... Read more
Copyright © 2000-2016 Globetech Media. All rights reserved.