Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING
JIB
GLOBETECH PUBLISHING

Ultrasound Using Microbubble Contrast Agent Provides Way to Visualize Tumors

By BiotechDaily International staff writers
Posted on 10 Feb 2014
Image:  SFRP2 targeted microbubbles bound specifically to vessels (stained green) within angiosarcoma (right). A control without the targeted microbubbles (left) (Photo courtesy of UNC Health Care).
Image: SFRP2 targeted microbubbles bound specifically to vessels (stained green) within angiosarcoma (right). A control without the targeted microbubbles (left) (Photo courtesy of UNC Health Care).
Whereas ultrasound provides a less expensive and radiation-free way to identify and track cancer in comparison to technologies such as X-rays, computed tomography (CT), and magnetic resonance imaging (MRI) scans, ultrasound has seen limited use in cancer treatment because of its clarity and resolution problems. Nevertheless, researchers have overcome these hurdles by combining ultrasound with a contrast agent composed of tiny bubbles that pair with an antibody that many cancer cells produce at higher levels than do normal cells.

By binding to the protein SFRP2, the microbubble contrast agent greatly improves the resolution and tumor-detecting ability of scans produced by ultrasound. In an article published January 29, 2014, in the journal PLOS ONE, University of North Carolina (UNC) Lineberger Comprehensive Cancer Center (Chapel Hill, NC, USA) members Nancy Klauber-Demore, MD, professor of surgery and Paul Dayton, PhD, professor of biomedical engineering, from the UNC at Chapel Hill School of Medicine (USA) were able to visualize lesions created by angiosarcoma, a malignant cancer that develops on the walls of blood vessels.

“The SFRP2-moleculary targeted contrast agent showed specific visualization of the tumor vasculature,” said Dr. Klauber-DeMore. “In contrast, there was no visualization of normal blood vessels. This suggests that the contrast agent may help distinguish malignant from benign masses found on imaging.”

Dr. Klauber-DeMore’s lab was the first to discover that angiosarcoma cells produce an excess of SFRP2. Building on that discovery, her team focused on how to use the protein to better monitor the progress of the cancer within blood vessels. Using a mouse model, the researchers delivered the microbubble contrast agent by way of intravenous injection and tracked it using ultrasound.

Since SFRP2 is expressed in many cancers, including colon, breast, pancreas, ovarian, and kidney tumors, the technique could potentially be useful on a wide range of cancer types. Dr. Klauber-DeMore reported that her colleagues now want to determine how well the technique works with these other tumor types, as well as studying its effect on breast cancer.

The study’s findings have shown that the level of SFRP2 in tumors increases as tumors develop, so Dr. Klauber-DeMore’s team will in addition examine whether the technique can be used to monitor tumor growth. This would make it helpful in tracking patient response to chemotherapy. They will also investigate whether it can be used to identify and visualize very small tumors.

Because ultrasound is less expensive than commonly used imaging methods, such as MRI, the new technique could help lower costs to patients who need cancer treatment. Moreover, because ultrasound is more portable than other imaging technology, it may be useful in providing treatment in rural and low-resource areas across North Carolina and throughout the United States.

Related Links:

University of North Carolina Lineberger Comprehensive Cancer Center
University of North Carolina at Chapel Hill School of Medicine



comments powered by Disqus

Channels

Genomics/Proteomics

view channel
Image: A leukemia cell coated with antibody is marked for destruction by activated natural killer cells (Photo courtesy of the University of Southern California).

Leukemia Cells Are Killed in Culture by Immune Cells Grown from the Same Patient

Immune system natural killer (NK) cells were isolated from leukemia patients, expanded in culture, and then shown in an in vitro system to attack and destroy cancer cells from the original cell donors.... Read more

Drug Discovery

view channel
Image: Synthetic ion transporters can induce apoptosis by facilitating chloride anion transport into cells (Photo courtesy of the University of Texas, Austin).

Experimental Drug Kills Cancer Cells by Interfering with Their Ion Transport Mechanism

An experimental anticancer drug induces cells to enter a molecular pathway leading to apoptosis by skewing their ion transport systems to greatly favor the influx of chloride anions. To promote development... Read more

Therapeutics

view channel
Image: Liver cells regenerated in mice treated with a new drug (right) compared with a control group (center) after partial liver removal. Healthy liver cells are shown at left (Photo courtesy of Marshall et al, 2014, the Journal of Experimental Medicine).

New Drug Triggers Liver Regeneration After Surgery

Investigators have revealed that an innovative complement inhibitor decreases complement-mediated liver cell death, and actually stimulates postsurgery liver regrowth in mice. Liver cancer often results... Read more

Lab Technologies

view channel

White-Matter Deficits Found in Codeine-Containing Cough Syrup Users

A magnetic resonance imaging (MRI) study of chronic users of codeine-containing cough syrups (CCS) has found deficits in specific regions of brain white matter and linked these changes with increased impulsivity in codeine-containing cough syrup users. These findings were consistent with findings from earlier research of... Read more

Business

view channel

Partnership Established to Decode Bowel Disease

23andMe (Mountain View, CA,USA), a personal genetics company, is collaborating with Pfizer, Inc. (New York, NY, USA), in which the companies will seek to enroll 10,000 people with inflammatory bowel disease (IBD) in a research project designed to explore the genetic factors associated with the onset, progression, severity,... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.