Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING LLC
GLOBETECH MEDIA
GLOBETECH PUBLISHING LLC

Ultrasound Using Microbubble Contrast Agent Provides Way to Visualize Tumors

By BiotechDaily International staff writers
Posted on 10 Feb 2014
Image:  SFRP2 targeted microbubbles bound specifically to vessels (stained green) within angiosarcoma (right). A control without the targeted microbubbles (left) (Photo courtesy of UNC Health Care).
Image: SFRP2 targeted microbubbles bound specifically to vessels (stained green) within angiosarcoma (right). A control without the targeted microbubbles (left) (Photo courtesy of UNC Health Care).
Whereas ultrasound provides a less expensive and radiation-free way to identify and track cancer in comparison to technologies such as X-rays, computed tomography (CT), and magnetic resonance imaging (MRI) scans, ultrasound has seen limited use in cancer treatment because of its clarity and resolution problems. Nevertheless, researchers have overcome these hurdles by combining ultrasound with a contrast agent composed of tiny bubbles that pair with an antibody that many cancer cells produce at higher levels than do normal cells.

By binding to the protein SFRP2, the microbubble contrast agent greatly improves the resolution and tumor-detecting ability of scans produced by ultrasound. In an article published January 29, 2014, in the journal PLOS ONE, University of North Carolina (UNC) Lineberger Comprehensive Cancer Center (Chapel Hill, NC, USA) members Nancy Klauber-Demore, MD, professor of surgery and Paul Dayton, PhD, professor of biomedical engineering, from the UNC at Chapel Hill School of Medicine (USA) were able to visualize lesions created by angiosarcoma, a malignant cancer that develops on the walls of blood vessels.

“The SFRP2-moleculary targeted contrast agent showed specific visualization of the tumor vasculature,” said Dr. Klauber-DeMore. “In contrast, there was no visualization of normal blood vessels. This suggests that the contrast agent may help distinguish malignant from benign masses found on imaging.”

Dr. Klauber-DeMore’s lab was the first to discover that angiosarcoma cells produce an excess of SFRP2. Building on that discovery, her team focused on how to use the protein to better monitor the progress of the cancer within blood vessels. Using a mouse model, the researchers delivered the microbubble contrast agent by way of intravenous injection and tracked it using ultrasound.

Since SFRP2 is expressed in many cancers, including colon, breast, pancreas, ovarian, and kidney tumors, the technique could potentially be useful on a wide range of cancer types. Dr. Klauber-DeMore reported that her colleagues now want to determine how well the technique works with these other tumor types, as well as studying its effect on breast cancer.

The study’s findings have shown that the level of SFRP2 in tumors increases as tumors develop, so Dr. Klauber-DeMore’s team will in addition examine whether the technique can be used to monitor tumor growth. This would make it helpful in tracking patient response to chemotherapy. They will also investigate whether it can be used to identify and visualize very small tumors.

Because ultrasound is less expensive than commonly used imaging methods, such as MRI, the new technique could help lower costs to patients who need cancer treatment. Moreover, because ultrasound is more portable than other imaging technology, it may be useful in providing treatment in rural and low-resource areas across North Carolina and throughout the United States.

Related Links:

University of North Carolina Lineberger Comprehensive Cancer Center
University of North Carolina at Chapel Hill School of Medicine



Channels

Genomics/Proteomics

view channel
Image: In mice, mitochondria (green) in healthy (left) and Mfn1-deficient heart muscle cells (center) are organized in a linear arrangement, but the organelles are enlarged and disorganized in Mfn2-deficient cells (right) (Photo courtesy of the Rockefeller Press).

Cell Biologists Find That Certain Mitochondrial Diseases Stem from Coenzyme Q10 Depletion

A team of German cell biologists has linked the development of certain mitochondrial-linked diseases to depletion of the organelles' pool of coenzyme Q10 brought about by mutation in the MFN2 gene, which... Read more

Drug Discovery

view channel
Image: Molecular model of the protein Saposin C (Photo courtesy of Wikimedia Commons).

Nanovesicles Kill Human Lung Cancer Cells in Culture and in a Mouse Xenograft Model

Nanovesicles assembled from the protein Saposin C (SapC) and the phospholipid dioleoylphosphatidylserine (DOPS) were shown to be potent inhibitors of lung cancer cells in culture and in a mouse xenograft model.... Read more

Biochemistry

view channel

Possible New Target Found for Treating Brain Inflammation

Scientists have identified an enzyme that produces a class of inflammatory lipid molecules in the brain. Abnormally high levels of these molecules appear to cause a rare inherited eurodegenerative disorder, and that disorder now may be treatable if researchers can develop suitable drug candidates that suppress this enzyme.... Read more

Lab Technologies

view channel
Image: The FLUOVIEW FVMPE-RS Gantry microscope (Photo courtesy of Olympus).

New Multiphoton Laser Scanning Microscope Configurations Expand Research Potential

Two new configurations of a state-of-the-art multiphoton laser scanning microscope extend the usefulness of the instrument for examining rapidly occurring biological events and for obtaining images from... Read more

Business

view channel

Roche Acquires Signature Diagnostics to Advance Translational Research

Roche (Basel, Switzerland) will advance translational research for next generation sequencing (NGS) diagnostics by leveraging the unique expertise of Signature Diagnostics AG (Potsdam, Germany) in biobanks and development of novel NGS diagnostic assays. Signature Diagnostics is a privately held translational oncology... Read more
 
Copyright © 2000-2015 Globetech Media. All rights reserved.