Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING LLC
PZ HTL SA
GLOBETECH PUBLISHING LLC

MRI/NRS Technology Designed for Imaging Dense Breast Abnormalities

By BiotechDaily International staff writers
Posted on 04 Feb 2014
Image: Overview of the MRI/near-infrared spectroscopy (NIRS) system. The NIRS system is housed in the MRI control room (a) and light is piped into the MRI suite for patient imaging using fiber optic cables (b). A combined MRI/NIRS breast coil (c) makes simultaneous MRI and NIRS imaging possible (Photo courtesy of Norris Cotton Cancer Center).
Image: Overview of the MRI/near-infrared spectroscopy (NIRS) system. The NIRS system is housed in the MRI control room (a) and light is piped into the MRI suite for patient imaging using fiber optic cables (b). A combined MRI/NIRS breast coil (c) makes simultaneous MRI and NIRS imaging possible (Photo courtesy of Norris Cotton Cancer Center).
Engineers and radiologists are developing a new application for diagnostic imaging of dense breasts with suspicious lesions. The magnetic resonance imaging/near-infrared spectroscopy (MRI/NIRS) technique offers greater flexibility, speed, and accuracy than existing imaging modalities. The new technology also shows potential for enhancing MRI’s ability to differentiate cancer from benign abnormalities.

Combined MRI/NIRS may benefit women whose mammogram showed an abnormality and requires additional testing to rule out cancer. The scanning would be conducted before an invasive biopsy to search for tumors. For the new technology to perform effectively in routine patient care, MRI/NIRS must adapt to an individual’s body size as well as accommodate a range of cup sizes. The equipment must also mobilize and maintain contact with the breast.

An MRI/NIRS may provide certain advantages to women with dense breasts, who are more prone to develop and die from breast cancer. A dense breast is more difficult for a radiologist to “see through” when using standard imaging equipment, which lacks the sensitivity to penetrate the dense tissue. Conventional breast screening is effective 77%–97% of the time in a normal breast, but when a breast is dense precision falls to 63%–89%.

Earlier techniques for MRI/NIRS used parallel plates and required custom breast molds for each patient. Biomedical engineers developed a new, more flexible, convenient, and comfortable approach. They designed a set of eight light transmitting cables that can be adjusted to surround the breast with light tension. A woman lies on her stomach and the breast hangs suspended through the holes of the MRI/NIRS breast coil. The procedure is nearly the same as clinical MRI scanning.

Eight women participated in the study of this new design the findings of which were published in the February 2014 issue of Academic Radiology. “We found that the new interface allowed us to target lesions more effectively than ever before,” said Dr. Michael Mastanduno, from Geisel School of Medicine at Dartmouth University (Hanover, NH, USA) and corresponding author of the study. “Set up time was faster and images were of higher quality.”

The Dartmouth MRI/NIRS technology offers increased coverage of the chest, giving providers improved visibility for “hard to see” areas, such as the neighboring region of the breast near the armpit. “This work is a huge improvement on previous designs of MRI/NIRS systems. All breast sizes and lesion locations can now be effectively imaged. Though there is more work to be done, this technology is promising for improving MRI’s ability to distinguish cancer from benign abnormalities,” said Dr. Mastanduno.

In the next phase of the study, Dartmouth researchers will assess MRI/NIRS in women with suspicious lesions.

Related Links:

Geisel School of Medicine at Dartmouth University



SLAS - Society for Laboratory Automation and Screening
BIOSIGMA S.R.L.
RANDOX LABORATORIES
comments powered by Disqus

Channels

Genomics/Proteomics

view channel

MicroRNA Panel Identifies Mild Brain Trauma in a Mouse Model

A study conducted on a mouse model found that a panel of 13 serum microRNAs (miRNAs) could be used to identify the severity of damage to the brain and the risk of developing adverse effects following mild traumatic brain injury (mTBI). MTBI is a heterogeneous injury that may lead to the development of neurological and... Read more

Drug Discovery

view channel

Omega 3 Found to Improve Behavior in Children with ADHD

Supplements of the fatty acids omega 3 and 6 can help children and adolescents who have a specific kind of have attention deficit hyperactivity disorder (ADHD). Moreover, these findings indicate that a customized cognitive training program can improve problem behavior in children with ADHD. Statistics show that 3%–6%... Read more

Biochemistry

view channel

Blocking Enzyme Switch Turns Off Tumor Growth in T-Cell Acute Lymphoblastic Leukemia

Researchers recently reported that blocking the action of an enzyme “switch” needed to activate tumor growth is emerging as a practical strategy for treating T-cell acute lymphoblastic leukemia. An estimated 25% of the 500 US adolescents and young adults diagnosed yearly with this aggressive disease fail to respond to... Read more

Lab Technologies

view channel
Image: Mouse kidneys, liver, and pancreas imaged after treatment with a variety of protocols: a saline solution, Scale, SeeDB (see deep brain), CUBIC, and carotid body (CB) perfusion (which was used in this study) (Photo courtesy of RIKEN Quantitative Biology Center).

Nearly Transparent Mice Offers Potential of Whole-Organism Imaging

Japanese researchers have developed a method that combines tissue decolorization and light-sheet fluorescent microscopy to take extremely detailed images of the interior of individual organs and even entire... Read more

Business

view channel

Two Industry Partnerships Initiated to Fuel Neuroscience Research

Faster, more complex neural research is now attainable by combining technology from two research companies. Blackrock Microsystems, LLC (Salt Lake City, UT, USA), a developer of neuroscience research equipment, announced partnerships with two neuroscience research firms—PhenoSys, GmbH (Berlin, Germany) and NAN Instruments, Ltd.... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.