Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Events

25 May 2016 - 27 May 2016
06 Jun 2016 - 09 Jun 2016
22 Jun 2016 - 24 Jun 2016

MRI/NRS Technology Designed for Imaging Dense Breast Abnormalities

By BiotechDaily International staff writers
Posted on 04 Feb 2014
Print article
Image: Overview of the MRI/near-infrared spectroscopy (NIRS) system. The NIRS system is housed in the MRI control room (a) and light is piped into the MRI suite for patient imaging using fiber optic cables (b). A combined MRI/NIRS breast coil (c) makes simultaneous MRI and NIRS imaging possible (Photo courtesy of Norris Cotton Cancer Center).
Image: Overview of the MRI/near-infrared spectroscopy (NIRS) system. The NIRS system is housed in the MRI control room (a) and light is piped into the MRI suite for patient imaging using fiber optic cables (b). A combined MRI/NIRS breast coil (c) makes simultaneous MRI and NIRS imaging possible (Photo courtesy of Norris Cotton Cancer Center).
Engineers and radiologists are developing a new application for diagnostic imaging of dense breasts with suspicious lesions. The magnetic resonance imaging/near-infrared spectroscopy (MRI/NIRS) technique offers greater flexibility, speed, and accuracy than existing imaging modalities. The new technology also shows potential for enhancing MRI’s ability to differentiate cancer from benign abnormalities.

Combined MRI/NIRS may benefit women whose mammogram showed an abnormality and requires additional testing to rule out cancer. The scanning would be conducted before an invasive biopsy to search for tumors. For the new technology to perform effectively in routine patient care, MRI/NIRS must adapt to an individual’s body size as well as accommodate a range of cup sizes. The equipment must also mobilize and maintain contact with the breast.

An MRI/NIRS may provide certain advantages to women with dense breasts, who are more prone to develop and die from breast cancer. A dense breast is more difficult for a radiologist to “see through” when using standard imaging equipment, which lacks the sensitivity to penetrate the dense tissue. Conventional breast screening is effective 77%–97% of the time in a normal breast, but when a breast is dense precision falls to 63%–89%.

Earlier techniques for MRI/NIRS used parallel plates and required custom breast molds for each patient. Biomedical engineers developed a new, more flexible, convenient, and comfortable approach. They designed a set of eight light transmitting cables that can be adjusted to surround the breast with light tension. A woman lies on her stomach and the breast hangs suspended through the holes of the MRI/NIRS breast coil. The procedure is nearly the same as clinical MRI scanning.

Eight women participated in the study of this new design the findings of which were published in the February 2014 issue of Academic Radiology. “We found that the new interface allowed us to target lesions more effectively than ever before,” said Dr. Michael Mastanduno, from Geisel School of Medicine at Dartmouth University (Hanover, NH, USA) and corresponding author of the study. “Set up time was faster and images were of higher quality.”

The Dartmouth MRI/NIRS technology offers increased coverage of the chest, giving providers improved visibility for “hard to see” areas, such as the neighboring region of the breast near the armpit. “This work is a huge improvement on previous designs of MRI/NIRS systems. All breast sizes and lesion locations can now be effectively imaged. Though there is more work to be done, this technology is promising for improving MRI’s ability to distinguish cancer from benign abnormalities,” said Dr. Mastanduno.

In the next phase of the study, Dartmouth researchers will assess MRI/NIRS in women with suspicious lesions.

Related Links:

Geisel School of Medicine at Dartmouth University



Print article

Channels

Genomics/Proteomics

view channel
Image: Follicular helper T-cells (TFH cells, shown in blue) play a crucial role in the maturation of antibody-producing B-cells (shown in green). Activated B-cells give rise germinal centers (shown in red), where mature B-cells proliferate and produce highly specific antibodies against pathogens. Top left: normal germinal center in a mouse tonsil. All others: Germinal centers fail to form when the interaction between ICOS and TBK1 is interrupted (Photo courtesy of Dr. Kok-Fai Kong, La Jolla Institute for Allergy and Immunology).

Molecular Pathway Controlling High-affinity Antibody Production Identified

A molecular pathway has been identified that controls formation of follicular helper T-cells (TFH cells) germinal centers and production of high-affinity antibodies through interaction with the inducible... Read more

Drug Discovery

view channel

Experimental Small-Molecule Anticancer Drug Blocks RAS-binding Domains

The experimental small-molecule anticancer drug rigosertib was shown to block tumor growth by acting as an RAS-mimetic and interacting with the RAS binding domains of RAF kinases, resulting in their inability to bind to RAS, which inhibited the RAS-RAF-MEK pathway. Oncogenic activation of RAS genes due to point mutations... Read more

Biochemistry

view channel
Image: A space-filling model of the anticonvulsant drug carbamazepine (Photo courtesy of Wikimedia Commons).

Wastewater May Contaminate Crops with Potentially Dangerous Pharmaceuticals

Reclaimed wastewater used to irrigate crops is contaminated with pharmaceutical residues that can be detected in the urine of those who consumed such produce. Investigators at the Hebrew University... Read more

Lab Technologies

view channel

Huge Modifiable Biomedical Database to Be Available on the Wikidata Site

Genome researchers are exploiting the power of the open Internet community Wikipedia database to create a comprehensive resource for geneticists, molecular biologists, and other interested life scientists. While efficiency in generating scientific data improves almost daily, applying meaningful relationships between... Read more

Business

view channel

European Biotech Agreement to Promote Antigen-Drug Conjugation Technology

Two European biotech companies have joined forces to exploit and commercialize an innovative, site-specific ADC (antigen-drug conjugate) conjugation technology. ProBioGen (Berlin, Germany), a company specializing in the development and manufacture of complex glycoproteins and Eucodis Bioscience (Vienna, Austria), a... Read more
Copyright © 2000-2016 Globetech Media. All rights reserved.