Features | Partner Sites | Information | LinkXpress
Sign In
PZ HTL SA
GLOBETECH PUBLISHING
GLOBETECH PUBLISHING

Swimming Bio-Bots Designed to Traverse Biologic Aquatic Environments

By BiotechDaily International staff writers
Posted on 27 Jan 2014
Image: Engineers developed the first tiny, synthetic machines that can swim by themselves, powered by beating heart cells (Photo courtesy of Alex Jerez Roman, Beckman Institute for Advanced Science and Technology).
Image: Engineers developed the first tiny, synthetic machines that can swim by themselves, powered by beating heart cells (Photo courtesy of Alex Jerez Roman, Beckman Institute for Advanced Science and Technology).
Scientists have devised synthetic, tiny self-propelled swimming bio-bots that are able to move through the aquatic fluids of the body.

A team of engineers has developed a type of tiny bio-hybrid machines that swim similar to sperm, the first synthetic structures that can traverse the viscous fluids of biologic environments by themselves. A report on the study led by Taher Saif, a University of Illinois (I of U; Urbana-Champaign, USA) professor of mechanical science and engineering, was published on January 18, 2014, in the journal Nature Communications. “Microorganisms have a whole world that we only glimpse through the microscope,” Prof. Saif said. “This is the first time that an engineered system has reached this underworld.”

The engineers started by creating the body of the bio-bot from a flexible polymer. Then they cultured heart cells near the junction of the head and the tail. The cells self-align and synchronize to beat together, sending a wave down the tail that pushes the bio-bot forward.

This self-organization is an amazing new phenomenon, according to Prof. Saif; however, how the cells talk with each other on the flexible polymer tail is yet to be effectively determined. However, the cells need to beat together, in the right direction, for the tail to move. “It’s the minimal amount of engineering—just a head and a wire,” Prof. Saif said. “Then the cells come in, interact with the structure, and make it functional.”

The researchers also constructed two-tailed bots, which they found could swim even faster. Multiple tails also creates new avenues of navigation. The researchers foresee future bots that could sense or light or chemicals and move toward a target for medical or environmental applications. “The long-term vision is simple,” said Prof. Saif, who is also from the Beckman Institute for Advanced Science and Technology at the U of I. “Could we make elementary structures and seed them with stem cells that would differentiate into smart structures to deliver drugs, perform minimally invasive surgery or target cancer?”

The swimming bio-bot project is part of a larger US National Science Foundation-supported Science and Technology Center on Emergent Behaviors in Integrated Cellular Systems, which also produced the walking bio-bots developed at Illinois in 2012.

“The most intriguing aspect of this work is that it demonstrates the capability to use computational modeling in conjunction with biological design to optimize performance, or design entirely different types of swimming bio-bots,” said center director Dr. Roger Kamm, a professor of biological and mechanical engineering at the Massachusetts Institute of Technology (MIT; Cambridge MA, USA). “This opens the field up to a tremendous diversity of possibilities--truly an exciting advance.”

Related Links:

University of Illinois



Channels

Genomics/Proteomics

view channel
Image: The TheraCyte cell encapsulation device (Photo courtesy of TheraCyte, Inc.).

Encapsulated Human-Insulin-Producing Progenitor Cells Cure Diabetes in Mouse Model

A breakthrough system that allows subcutaneous implantation of encapsulated immature pancreatic cells (beta progenitor cells) was shown to produce enough insulin to correct the symptoms of diabetes in a mouse model.... Read more

Drug Discovery

view channel
Image: Chitosan is derived from the shells of shrimp and other sea crustaceans, including Alaskan pink shrimp, pictured here (Photo courtesy of NOAA - [US] National Oceanic and Atmospheric Administration).

Chitosan Treatment Clears the Way for Antibiotics to Eliminate Recurrent Urinary Tract Infections

Recurrent urinary tract infection was successfully resolved in a mouse model by treatment with the exfoliant chitosan followed by a round of antibiotics. Bacterial urinary tract infection (UTI), most... Read more

Biochemistry

view channel

Mitochondrial Cause of Aging Can Be Reversed

Researchers have found a cause of aging in lab animals that can be reversed, possibly providing an avenue for new treatments for age-related diseases including type 2 diabetes, cancer, muscle wasting, and inflammatory diseases. The researchers plan to begin human trials late 2014. The study, which was published December... Read more

Therapeutics

view channel

Cytokine Identified That Causes Mucositis in Cancer Therapy Patients

The action of the cytokine interleukin 1-beta (IL-1beta) has been found to underlie the onset of mucositis, a common, severe side effect of chemotherapy and irradiation of cancer patients. Mucositis occurs as a result of cell death in reaction to chemo- or radiotherapy. The mucosal lining of the mouth becomes thin, may... Read more

Business

view channel

Analytical Sciences Trade Fair Declared a Rousing Success

Organizers of this year's 24th "analytica" biosciences trade fair have reported significant increases in both the number of visitors and exhibitors compared to the 2012 event. The analytica trade fair for laboratory technology, analysis, and biotechnology has been held at the Munich (Germany) Trade Fair Center every... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.