Features | Partner Sites | Information | LinkXpress
Sign In
Demo Company

New Nanomaterial Promises Enhanced Detection and Treatment of Breast Cancer

By BiotechDaily International staff writers
Posted on 07 Jan 2014
Image: Muonium [an exotic atom made up of an antimuon and an electron] trapped inside a buckyball. Muons provide a complementary probe to neutrons, particularly in the areas of magnetism, superconductivity, and charge transport (Photo courtesy of ISIS).
Image: Muonium [an exotic atom made up of an antimuon and an electron] trapped inside a buckyball. Muons provide a complementary probe to neutrons, particularly in the areas of magnetism, superconductivity, and charge transport (Photo courtesy of ISIS).
A collaboration of scientists from the United Kingdom, Denmark, Brazil, and Germany are devising new detection and treatment technology for breast cancer patients.

The study’s findings were published December 2013 in the Journal of Alloys and Compounds. Current diagnostic methods such as mammograms can only detect between 65% and 95% of tumors, and developing better ways of detection is of prime urgency. If not detected and treated early enough, breast cancer can spread to other areas of the body, increasing the probability that the disease will become lethal.

The team of scientists has been using the Polaris instrument at the ISIS pulsed neutron and muon source at the Rutherford Appleton Laboratory (Harwell Oxford, UK) to develop a new bio-nanocomposite that they hope will eventually lead to earlier detection, and more successful treatment, of breast cancer. The new substance exploits the fact that cancer cells attract a molecule called hydroxyapatite, which is a component of bones. The researchers are developing magnetic nanoparticles coated with a biocompatible polymer that includes hydroxyapatite nanocrystals. When administered into the body, these nanoparticles should travel right to cancer cells, and once they do, they make it much easier to detect the tumor on an MRI scan.

Not only do the nanoparticles help to identify tumors, but they may also help to block the metastasis to other areas of the body, as hydroxyapatite is known to suppress that facet of tumor activity.

The next phase of study is to incorporate antitumor agents into the nanoparticles. The magnetic nature of the nanoparticles means that they can be directed to the site of the tumor by using magnets outside of the body. If antitumor drugs can be added to the nanoparticles, then they can be used to deliver the treatment directly to the tumor, optimizing the effectiveness of the treatment and reducing the risk of harmful side effects--imagine a fleet of tiny drones, delivering anticancer weapons right where they are needed.

This research is at a very early stage, and far more study is required, according to the scientists, before it can be developed into a treatment option.

ISIS generates beams of neutrons and muons that allow scientists to study materials at the atomic level using a suite of instruments, frequently described as super-microscopes. It supports a national and international community of more than 2,000 scientists who use neutrons and muons for research in physics, chemistry, materials science, geology, engineering, and biology.

Related Links:




view channel
Image: Micrograph showing immunofluorescence of skin differentiation markers for basal keratinocytes (Photo courtesy of Dr. Russ Carstens, University of Pennsylvania).

Alternate Splicing Proteins Critically Linked to Skin and Organ Development

Two proteins that regulate alternative splicing in epithelial cells have been linked to the proper development of the skin and protective layers that surround other organs in the body. Two steps are... Read more

Drug Discovery

view channel
Image: Use of catchphrase terms like “breakthrough” and “promising” in public news media presenting new drugs tends to result in incorrect assumptions and conclusions about the meaning and significance of criteria for FDA breakthrough-designated and accelerated-approval drugs (Photo courtesy of Dartmouth Institute).

Words That Inappropriately Enhance Perception of New Drug’s Effectiveness

Researchers have found that using the words “breakthrough” and “promising” in presenting a new drug to the general public often has a dramatic effect on judgment about its effectiveness.... Read more

Lab Technologies

view channel

New Genomic Research Kit Simplifies Exome Studies

An exciting new tool is now available for biotech researchers working in the field of genomic analysis. The human exome is critical to our genetic make-up and is generally accepted as having the greatest influence on how the genetic blueprint is utilized. The exome is defined as all coding exons in the genome and is... Read more


view channel

Collaboration Agreement to Boost Discovery of Fully Human Antibodies for Therapeutic Use

The discovery of fully human antibodies for therapeutic use will be boosted by a recently announced collaboration between a major university research center and a dynamic biopharmaceutical development company. Regeneron Pharmaceuticals, Inc. (Tarrytown, New York, USA) and The Experimental Therapeutics Institute (ETI)... Read more


17 Oct 2015 - 21 Oct 2015
25 Oct 2015 - 29 Oct 2015
16 Nov 2015 - 19 Nov 2015
Copyright © 2000-2015 Globetech Media. All rights reserved.