Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC
GLOBETECH MEDIA

Standardized Assays Developed to Quantify Human Proteins

By BiotechDaily International staff writers
Posted on 30 Dec 2013
Image: Orbitrap Velos Pro hybrid ion trap mass spectrometer (Photo courtesy of Thermo Scientific).
Image: Orbitrap Velos Pro hybrid ion trap mass spectrometer (Photo courtesy of Thermo Scientific).
The feasibility of large-scale standardized protein measurements, which are necessary for validation of disease biomarkers, has been developed.

Multiple reaction monitoring (MRM) mass spectrometry has been successfully applied to monitor targeted proteins in biological specimens, raising the possibility that assays could be configured to measure all human proteins.

Scientists at the Fred Hutchinson Cancer Research Center (Seattle, WA, USA) in collaboration with other intuitions targeted a protein-detection approach that has the potential to systematically and reliably measure the entire human repertoire of proteins, known as the proteome. The MRM technique can simultaneously and precisely detect the abundance of hundreds of proteins in many different samples. The teams of investigators were able to reproduce measurements of 319 proteins from human breast cancer cells, showing that the method can be standardized across laboratory and international boundaries.

This method enabled highly specific, precise, multiplex, quantification of a minimum of 170 proteins in 20 clinical samples per instrument per day— no other existing technology has this power. Because the mass spectrometry technique is targeted, meaning the scientists can tune the instruments to look for a specific subset of proteins in cancer cells or other sample types, it can detect the presence of proteins of interest at much lower levels in minute blood samples or biopsies than a nontargeted tactic.

Amanda Paulovich, MD, the senior author of the study, said, “This method has the potential to completely revolutionize how we measure human proteins. Having a global resource for standardized quantification of all human proteins would set new standards that would undoubtedly increase the reproducibility of preclinical research, which would have a dramatic impact on the translation of novel therapeutics and diagnostics. Right now, you can't make robust measurements of most human proteins. More than 10 years after the human genome has been sequenced and we have the full catalog of molecules as important as proteins, we still can't study the human proteome with any kind of throughput in a standardized, quantitative manner.” The study was published on December 8, 2013, in the journal Nature Methods.

Related Links:

Fred Hutchinson Cancer Research Center



Channels

Genomics/Proteomics

view channel
Image: The photo shows a mouse pancreatic islet as seen by light microscopy. Beta cells can be recognized by the green insulin staining. Glucagon is labeled in red and the nuclei in blue (Photo courtesy of Wikimedia Commons).

Regenerative Potential Is a Trait of Mature Tissues, Not an Innate Feature of Newly Born Cells

Diabetes researchers have found that the ability of insulin-producing beta cells to replicate and respond to elevated glucose concentrations is absent in very young animals and does not appear until after weaning.... Read more

Drug Discovery

view channel
Image: Wafers like the one shown here are used to create “organ-on-a-chip” devices to model human tissue (Photo courtesy of Dr. Anurag Mathur, University of California, Berkeley).

Human Heart-on-a-Chip Cultures May Replace Animal Models for Drug Development and Safety Screening

Human heart cells growing in an easily monitored silicon chip culture system may one day replace animal-based model systems for drug development and safety screening. Drug discovery and development... Read more

Biochemistry

view channel
Image:  Model depiction of a novel cellular mechanism by which regulation of cryptochromes Cry1 and Cry2 enables coordination of a protective transcriptional response to DNA damage caused by genotoxic stress (Photo courtesy of the journal eLife, March 2015, Papp SJ, Huber AL, et al.).

Two Proteins Critical for Circadian Cycles Protect Cells from Mutations

Scientists have discovered that two proteins critical for maintaining healthy day-night cycles also have an unexpected role in DNA repair and protecting cells against genetic mutations that could lead... Read more

Business

view channel

Roche Acquires Signature Diagnostics to Advance Translational Research

Roche (Basel, Switzerland) will advance translational research for next generation sequencing (NGS) diagnostics by leveraging the unique expertise of Signature Diagnostics AG (Potsdam, Germany) in biobanks and development of novel NGS diagnostic assays. Signature Diagnostics is a privately held translational oncology... Read more
 
Copyright © 2000-2015 Globetech Media. All rights reserved.