Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING
JIB
GLOBETECH PUBLISHING

Graphene Sandwich Technology Reveals Clues into Inner Workings of Proteins

By BiotechDaily International staff writers
Posted on 30 Dec 2013
Image: Artist impression of a graphene sheet (Photo courtesy of the University of Manchester).
Image: Artist impression of a graphene sheet (Photo courtesy of the University of Manchester).
British scientists have discovered that the most fragile, microscopic compounds can be saved from the harmful effects of radiation when under the microscope if they are “sandwiched” between two sheets of graphene. The technique could soon be the answer to being able to directly study every single individual atom in a protein chain—something that has not yet been achieved—and transform the determination of cell structure, how the immune system reacts to viruses, and help in the design of new antiviral drugs.

Seeing the structure of some the smallest of objects at the atomic level, such as proteins and other sensitive two-dimensional (2D) substances, requires a powerful electron microscope. This is extremely problematic because the radiation from the electron beam can kill the very fragile object being imaged before any valuable data can be effectively recorded. However, by protecting fragile objects between two sheets of graphene they can be imaged for longer without damage under the electron beam, making it possible to quantitatively identify every single atom within the structure.

This technique has been shown to be very successful on the test case of a fragile inorganic 2D crystal, and the study’s findings were published November 26, 2013, in the journal ACSNano. The research was conducted by investigators from the University of Manchester (UK) and the SuperSTEM facility, which is located at Science & Technology Facilities’ Council (STFC) Daresbury Laboratory (UK), and funded by the Engineering and Physical Sciences Research Council (EPSRC; Swindon, Wiltshire, UK).

The team of scientists, which included Sir Kostya Novoselov, who shared a Nobel Prize in Physics in 2010 for utilizing the remarkable characteristics of graphene, was able to visualize the effects of encasing a microscopic crystal of another highly delicate 2D material, molybdenum disulfide, between two sheets of graphene. They discovered that they were able to apply a high electron beam to directly image, identify, and obtain complete chemical analysis of each and every atom within the molybdenum di-sulfide sheet, without causing any defects to the compound through radiation.

The University of Manchester’s Dr. Recep Zan, who led the research team, said, “Graphene is a million times thinner than paper, yet stronger than steel, with fantastic potential in areas from electronics to energy. But this research shows its potential in biochemistry could also be just as significant, and could eventually open up all sorts of applications in the biotechnology arena.”

Prof. Quentin Ramasse, scientific director at SuperSTEM ,added, “What this research demonstrates is not so much about graphene itself, but how it can impact the detail and accuracy at which we can directly study other inorganic 2D materials or highly fragile molecules. Until now, this has mostly been possible through less direct and often complicated methods such as protein crystallography, which do not provide a direct visualization of the object in question. This new capability is particularly exciting, because it could pave the way to being able to image every single atom in a protein chain for example, something which could significantly impact our development of treatments for conditions such as cancer, Alzheimer’s and HIV.”

Related Links:

University of Manchester
Science & Technology Facilities’ Council Daresbury Laboratory



comments powered by Disqus

Channels

Genomics/Proteomics

view channel
Image: Alternative splicing produces two protein isoforms (Photo courtesy of Wikimedia Commons).

Key Regulator of Cancer-Inducing Alternative Splicing Identified

Cancer researchers have identified the splicing factor RBM4 (RNA-binding protein 4) as a key determinant in processes that prevent tumor development and spread. RBM4 is known to be crucial to gene splicing... Read more

Drug Discovery

view channel

Ibuprofen May Restore Immune Function in Older Individuals

New research suggests that macrophages from the lungs of old mice respond differently to infections than those of young mice, and ibuprofen given to the mice reversed these changes. New research using lab mice suggests that the solution to more youthful immune function might already be a common over-the-counter pain reliever.... Read more

Therapeutics

view channel
Image: Hair follicle (blue) being attacked by T cells (green) (Photo courtesy of Christiano Lab/Columbia University Medical Center).

Hair Restoration Method Clones Patients’ Cells to Grow New Hair Follicles

Researchers have developed of a new hair restoration approach that uses a patient’s cells to grow new hair follicles. In addition, the [US] Food and Drugs Administration (FDA) recently approved a new drug... Read more

Business

view channel

Partnership Established to Decode Bowel Disease

23andMe (Mountain View, CA,USA), a personal genetics company, is collaborating with Pfizer, Inc. (New York, NY, USA), in which the companies will seek to enroll 10,000 people with inflammatory bowel disease (IBD) in a research project designed to explore the genetic factors associated with the onset, progression, severity,... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.