Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC
PZ HTL SA

MR Research Reveals Altered Brain Connections in Epilepsy Patients

By BiotechDaily International staff writers
Posted on 12 Dec 2013
Image: Flowchart illustrates the steps of the connectivity analysis. MP-RAGE (magnetization-prepared rapid acquisition gradient echo) volumes are segmented into 83 region of interest (ROIs), which are further parcellated into 1,000 cortical and 15 subcortical ROIs. Whole-brain white matter tractography is performed after voxelwise tensor calculation, and the density of fibers that connect each pair of cortical ROIs is used to calculate structural connectivity. T1w = T1-weighted (Photo courtesy of RSNA).
Image: Flowchart illustrates the steps of the connectivity analysis. MP-RAGE (magnetization-prepared rapid acquisition gradient echo) volumes are segmented into 83 region of interest (ROIs), which are further parcellated into 1,000 cortical and 15 subcortical ROIs. Whole-brain white matter tractography is performed after voxelwise tensor calculation, and the density of fibers that connect each pair of cortical ROIs is used to calculate structural connectivity. T1w = T1-weighted (Photo courtesy of RSNA).
Image: Surface representation shows the gray-white matter junction of the seven modules that emerge by using the Newman spectral algorithm on an across-subject (both healthy subjects and patients with temporal lobe epilepsy [TLE]) average connectivity matrix (Photo courtesy of RSNA).
Image: Surface representation shows the gray-white matter junction of the seven modules that emerge by using the Newman spectral algorithm on an across-subject (both healthy subjects and patients with temporal lobe epilepsy [TLE]) average connectivity matrix (Photo courtesy of RSNA).
Image: Inflated cortical surface representations show the significant (p  the group of patients with TLE and healthy subjects. Warm colors (red, orange, and yellow) indicate increases in TLE, while cool colors (blue) indicate decreases. Within-module connectivity is within-module z score of degree, and between-module connectivity is participation coefficient. Light gray areas represent gyri, and dark gray areas represent sulci. Lat = lateral, Med = medial (Photo courtesy of RSNA).
Image: Inflated cortical surface representations show the significant (p the group of patients with TLE and healthy subjects. Warm colors (red, orange, and yellow) indicate increases in TLE, while cool colors (blue) indicate decreases. Within-module connectivity is within-module z score of degree, and between-module connectivity is participation coefficient. Light gray areas represent gyri, and dark gray areas represent sulci. Lat = lateral, Med = medial (Photo courtesy of RSNA).
New imaging findings show that patients with the most typical form of focal epilepsy have widespread, abnormal connections in their brains. This new research could provide insights for better diagnosis and treatment of the disorder.

The study’s findings were published online November 19, 2013, in the journal Radiology. Temporal lobe epilepsy (TLE) is characterized by seizures originating from the temporal lobes. Clinicians at first believed that the disorder was related to isolated injuries of structures within the temporal lobe, such as the hippocampus. However, recent research has implicated the default mode network (DMN), the set of brain regions activated during task-free introspection and deactivated during goal-directed behavior. The DMN consists of several hubs that are more active during the resting state.

Researchers performed diffusion tensor imaging—a type of magnetic resonance imaging (MRI) technology that monitors the diffusion of water in the brain’s white matter—of the nerve fibers that send signals throughout the brain to analyze the patients. The study group consisted of 24 patients with left temporal lobe epilepsy who were scheduled for surgery to remove the site from where their seizures emanated. The researchers compared them with 24 healthy controls using an MRI protocol designed to find white matter tracts with diffusion imaging at high resolution. The data were studied with a new technique that identifies and quantifies structural connections in the brain.

Patients with left temporal lobe epilepsy showed a drop in long-range connectivity of 22%–45% among areas of the DMN when compared with the healthy controls. “Using diffusion MRI, we found alterations in the structural connectivity beyond the medial temporal lobe, especially in the default mode network,” said Steven M. Stufflebeam, MD, from the Athinoula A. Martinos Center for Biomedical Imaging at Massachusetts General Hospital (Boston, MA, USA).

In addition to reduced long-range connectivity, the epileptic patients had an 85%–270% increase in local connectivity within and beyond the DMN. The researchers believe this may be an adaptation to the loss of the long-range connections. “The increase in local connections could represent a maladaptive mechanism by which overall neural connectivity is maintained despite the loss of connections through important hub areas,” Dr. Stufflebeam said.

The findings are supported by earlier functional MRI scans that have shown decreased functional connectivity in DMN areas in temporal lobe epilepsy. Researchers are not sure if the structural changes cause the functional changes, or the opposite. “It’s probably a breakdown of myelin, which is the insulation of neurons, causing a slowdown in the propagation of information, but we don’t know for sure,” Dr. Stufflebeam said.

Dr. Stufflebeam and colleagues plan to continue their research, using structural and functional MRI with electroencephalography and magnetoencephalography to monitor diffusion changes and visualize real-time brain activity. “Our long-term goal is to see if we can we predict from diffusion studies who will respond to surgery and who will not,” he said.

The study is part of the Human Connectome Project, a five-year project funded by the National Institutes of Health that uses neuroimaging techniques to study connectomics, or the functional and structural connections in the brain.

Related Links:

Massachusetts General Hospital




BIOSIGMA S.R.L.
RANDOX LABORATORIES
SLAS - Society for Laboratory Automation and Screening
comments powered by Disqus

Channels

Genomics/Proteomics

view channel
Image: A 3-dimensional picture reveals how the antibodies in the experimental drug Zmapp bind to Ebola virus (Photo courtesy of the Scripps Research Institute).

Electron Microscope Imaging Shows How Experimental Anti-Ebola Drug Works

Electron microscope imaging has revealed how the experimental drug ZMapp binds to the Ebolavirus and provides insights into how the drug prevents growth of the pathogen. ZMapp, which was developed by... Read more

Drug Discovery

view channel

Omega 3 Found to Improve Behavior in Children with ADHD

Supplements of the fatty acids omega 3 and 6 can help children and adolescents who have a specific kind of have attention deficit hyperactivity disorder (ADHD). Moreover, these findings indicate that a customized cognitive training program can improve problem behavior in children with ADHD. Statistics show that 3%–6%... Read more

Biochemistry

view channel

Blocking Enzyme Switch Turns Off Tumor Growth in T-Cell Acute Lymphoblastic Leukemia

Researchers recently reported that blocking the action of an enzyme “switch” needed to activate tumor growth is emerging as a practical strategy for treating T-cell acute lymphoblastic leukemia. An estimated 25% of the 500 US adolescents and young adults diagnosed yearly with this aggressive disease fail to respond to... Read more

Lab Technologies

view channel

e-Incubator Technology Provides Real-Time Imaging of Bioengineered Tissues in a Controlled Unit

A new e-incubator, an innovative miniature incubator that is compatible with magnetic resonance imaging (MRI), enables scientists to grow tissue-engineered constructs under a controlled setting and to study their growth and development in real time without risk of contamination or damage. Offering the potential to test... Read more

Business

view channel

Two Industry Partnerships Initiated to Fuel Neuroscience Research

Faster, more complex neural research is now attainable by combining technology from two research companies. Blackrock Microsystems, LLC (Salt Lake City, UT, USA), a developer of neuroscience research equipment, announced partnerships with two neuroscience research firms—PhenoSys, GmbH (Berlin, Germany) and NAN Instruments, Ltd.... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.