Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

EMRs Could Help Discover New Disease Associations

By BiotechDaily International staff writers
Posted on 10 Dec 2013
Print article
A new study is repurposing genetic data and electronic medical records (EMRs) to perform a large-scale validation of known disease associations.

Researchers at Vanderbilt University Medical Center (Vanderbilt, Nashville, TN, USA) and other institutions participating in the phenome-wide association study (PheWAS) used genotype data from 13,835 individuals of European descent, exhibiting 1,358 diseases collectively. The team then ran PheWAS on 3,144 single-nucleotide polymorphisms (SNPs), checking each SNP association with each of the 1,358 disease phenotypes. The researchers thus succeeded in identifying 63 previously unknown SNP-disease associations, the strongest of which related to skin diseases.

The researchers also created an online PheWAS catalog that may help understand the influence of many common genetic variants on human conditions. The researchers stressed that PheWAS would be unworkable without the eMERGE Network, of which Vanderbilt is the coordinating center. The network has expanded to nine sites with DNA samples from about 51,000 individuals linked to EMRs. The eMERGE Network is funded by the US National Human Genome Research Institute (Bethesda, MD, USA). The study was published on November 24, 2013, in Nature Biotechnology.

“This study broadly shows that we can take decades of off-the-shelf electronic medical record data, link them to DNA, and quickly validate known associations across hundreds of previous studies; at the same time, we can discover many new associations,” said lead author Josh Denny, MD, MSc, an associate professor of biomedical informatics and medicine. “Our method does not select any particular disease; it searches simultaneously for more than a thousand diseases. By doing this, we were able to show some genes that are associated several diseases or traits, while others are not.”

“If you think about the way genetic research has been done for the last 50 years or more, a lot of it was done through carefully planned clinical trials or observational cohorts,” added Dr. Denny. “This certainly does not supplant those in any way but provides a cost efficient, systematic method to look at many different diseases over time in a way that you really can't do easily with an observational cohort.”

Related Links:

Vanderbilt University Medical Center
eMERGE Network
US National Human Genome Research Institute



Print article

Channels

Genomics/Proteomics

view channel
Image: Healthy blood cells along with sickle-cell diseased cells (Photo courtesy of Science Picture Co./Corbis).

Gene Editing Corrects Hemoglobin Defects in Beta-Thalassemia and Sickle Cell Disease

A team of hematology researchers used the CRISPR/Cas9 gene editing technique to correct the mutations that cause defective blood cell morphology in beta-thalassemia and sickle cell disease.... Read more

Biochemistry

view channel
Image: A space-filling model of the anticonvulsant drug carbamazepine (Photo courtesy of Wikimedia Commons).

Wastewater May Contaminate Crops with Potentially Dangerous Pharmaceuticals

Reclaimed wastewater used to irrigate crops is contaminated with pharmaceutical residues that can be detected in the urine of those who consumed such produce. Investigators at the Hebrew University... Read more

Business

view channel

Collaborative Agreement to Aid in Setting Guidelines for Evaluating Potential Ebola Therapy

Cooperation between an Israeli biopharmaceutical company and medical branches of the US government is designed to set ground rules for continued evaluation of an experimental therapy for Ebola virus disease. RedHill Biopharma Ltd. (Tel Aviv, Israel), a biopharmaceutical company primarily focused on development and c... Read more
Copyright © 2000-2016 Globetech Media. All rights reserved.