Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING LLC
GLOBETECH MEDIA
GLOBETECH PUBLISHING LLC

New Module Enables Super-Resolution Microscopy of Cell Organelles in Three Dimensions

By BiotechDaily International staff writers
Posted on 20 Nov 2013
Image: The ELYRA super-resolution microscope system enables 3D-PALM imagery (Photo courtesy of Zeiss).
Image: The ELYRA super-resolution microscope system enables 3D-PALM imagery (Photo courtesy of Zeiss).
Biotech researchers and other life scientists who employ advanced microscopy techniques are now able to move up to a state-of-the-art super-resolution microscopy system.

Zeiss (Jena, Germany) has introduced ELYRA P.1, a new module that makes possible three-dimensional (3D) super-resolution photoactivated localization microscopy (PALM) for endogenously-expressed photo-switchable fluorescent proteins.

In PALM, photo-switchable fluorescent molecules are sparsely activated so that only one out of many will be in its on-state within a single point spread function (PSF). In 3D, the PSF shape codes for the z-position. The localizations are plotted in a new image to create the super-resolved image. ELYRA P.1 achieves resolutions in the range of 20–30 nanometers laterally and 50–80 nanometers axially. The ELYRA P.1 module captures highly resolved structures in 3D, while treating the sample so gently that it remains available for long-term observation.

The ELYRA system can be integrated with the Zeiss laser scanning microscopes LSM 710 or LSM 780. In addition, ELYRA works seamlessly together with Zeiss scanning electron microscopes.

“With ELYRA, researchers can investigate the structural arrangement of one or multiple proteins, reveal the ultrastructure of cell organelles in 2D and 3D as well as map and count molecules within a structure. Sophisticated algorithms relate photon statistics to precision information in all directions, so researchers can display their structures fully rendered in 3D,” said Dr. Klaus Weisshart, ELYRA product manager at Zeiss.

Related Links:

Zeiss



Channels

Genomics/Proteomics

view channel
Image: Transmission electron micrograph of norovirus particles in feces (Photo courtesy of Wikimedia Commons).

Norovirus Interacts with Gut Bacteria to Establish a Persistent Infection That Can Be Blocked by Interferon Lambda

A team of molecular microbiologists and virologists has found that norovirus requires an intimate interaction with certain gut bacteria to establish a persistent infection, and that the infective process... Read more

Biochemistry

view channel

Possible New Target Found for Treating Brain Inflammation

Scientists have identified an enzyme that produces a class of inflammatory lipid molecules in the brain. Abnormally high levels of these molecules appear to cause a rare inherited eurodegenerative disorder, and that disorder now may be treatable if researchers can develop suitable drug candidates that suppress this enzyme.... Read more

Therapeutics

view channel
Image: Cancer cells infected with tumor-targeted oncolytic virus (red). Green indicates alpha-tubulin, a cell skeleton protein. Blue is DNA in the cancer cell nuclei (Photo courtesy of Dr. Rathi Gangeswaran, Bart’s Cancer Institute).

Innovative “Viro-Immunotherapy” Designed to Kill Breast Cancer Cells

A leading scientist has devised a new treatment that employs viruses to kill breast cancer cells. The research could lead to a promising “viro-immunotherapy” for patients with triple-negative breast cancer,... Read more

Business

view channel

Program Designed to Provide High-Performance Computing Cluster Systems for Bioinformatics Research

Dedicated Computing (Waukesha, WI, USA), a global technology company, reported that it will be participating in the Intel Cluster Ready program to deliver integrated high-performance computing cluster solutions to the life sciences market. Powered by Intel Xeon processors, Dedicated Computing is providing a range of... Read more
 
Copyright © 2000-2015 Globetech Media. All rights reserved.