Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC
GLOBETECH MEDIA

New Module Enables Super-Resolution Microscopy of Cell Organelles in Three Dimensions

By BiotechDaily International staff writers
Posted on 20 Nov 2013
Image: The ELYRA super-resolution microscope system enables 3D-PALM imagery (Photo courtesy of Zeiss).
Image: The ELYRA super-resolution microscope system enables 3D-PALM imagery (Photo courtesy of Zeiss).
Biotech researchers and other life scientists who employ advanced microscopy techniques are now able to move up to a state-of-the-art super-resolution microscopy system.

Zeiss (Jena, Germany) has introduced ELYRA P.1, a new module that makes possible three-dimensional (3D) super-resolution photoactivated localization microscopy (PALM) for endogenously-expressed photo-switchable fluorescent proteins.

In PALM, photo-switchable fluorescent molecules are sparsely activated so that only one out of many will be in its on-state within a single point spread function (PSF). In 3D, the PSF shape codes for the z-position. The localizations are plotted in a new image to create the super-resolved image. ELYRA P.1 achieves resolutions in the range of 20–30 nanometers laterally and 50–80 nanometers axially. The ELYRA P.1 module captures highly resolved structures in 3D, while treating the sample so gently that it remains available for long-term observation.

The ELYRA system can be integrated with the Zeiss laser scanning microscopes LSM 710 or LSM 780. In addition, ELYRA works seamlessly together with Zeiss scanning electron microscopes.

“With ELYRA, researchers can investigate the structural arrangement of one or multiple proteins, reveal the ultrastructure of cell organelles in 2D and 3D as well as map and count molecules within a structure. Sophisticated algorithms relate photon statistics to precision information in all directions, so researchers can display their structures fully rendered in 3D,” said Dr. Klaus Weisshart, ELYRA product manager at Zeiss.

Related Links:

Zeiss



WATERS CORPORATION

Channels

Genomics/Proteomics

view channel
Image: Electron micrograph of Hepatitis C virus purified from cell culture. Scale bar is 50 nanometers (Photo courtesy of the Center for the Study of Hepatitis C, the Rockefeller University).

Oxidized LDL Predicts Response to Interferon Treatment of Chronic Hepatitis C and May Be a Treatment Option

Oxidized low-density lipoprotein (oxLDL) in the blood was shown to predict responsiveness to interferon treatment in patients with chronic Hepatitis C virus (HCV) infection and to inhibit spread of the... Read more

Drug Discovery

view channel
Image: Molecular model of the anti-cancer drug 5-fluorouracil (Photo courtesy of Wikimedia Commons).

Novel Microcapsule Approach Reduces Toxic Side Effects of Chemotherapy

Cancer researchers have reduced chemotherapy's toxic side effects by using nanoporous capsules to transport an enzyme to the site of a tumor where it is activated by a selective heating process to convert... Read more

Business

view channel

NanoString and MD Anderson Collaborate on Development of Novel Multi-Omic Expression Profiling Assays for Cancer

The University of Texas MD Anderson Cancer Center (Houston, TX, USA) and NanoString Technologies, Inc. (Seattle, WA, USA) will partner on development of a revolutionary new type of assay—simultaneously profiling gene and protein expression, initially aiming to discover and validate biomarker signatures for immuno-oncology... Read more
 

Events

02 Jun 2015 - 03 Jun 2015
15 Jun 2015 - 18 Jun 2015
Copyright © 2000-2015 Globetech Media. All rights reserved.