Features | Partner Sites | Information | LinkXpress
Sign In
JIB
GLOBETECH PUBLISHING
GLOBETECH PUBLISHING

New Module Enables Super-Resolution Microscopy of Cell Organelles in Three Dimensions

By BiotechDaily International staff writers
Posted on 20 Nov 2013
Image: The ELYRA super-resolution microscope system enables 3D-PALM imagery (Photo courtesy of Zeiss).
Image: The ELYRA super-resolution microscope system enables 3D-PALM imagery (Photo courtesy of Zeiss).
Biotech researchers and other life scientists who employ advanced microscopy techniques are now able to move up to a state-of-the-art super-resolution microscopy system.

Zeiss (Jena, Germany) has introduced ELYRA P.1, a new module that makes possible three-dimensional (3D) super-resolution photoactivated localization microscopy (PALM) for endogenously-expressed photo-switchable fluorescent proteins.

In PALM, photo-switchable fluorescent molecules are sparsely activated so that only one out of many will be in its on-state within a single point spread function (PSF). In 3D, the PSF shape codes for the z-position. The localizations are plotted in a new image to create the super-resolved image. ELYRA P.1 achieves resolutions in the range of 20–30 nanometers laterally and 50–80 nanometers axially. The ELYRA P.1 module captures highly resolved structures in 3D, while treating the sample so gently that it remains available for long-term observation.

The ELYRA system can be integrated with the Zeiss laser scanning microscopes LSM 710 or LSM 780. In addition, ELYRA works seamlessly together with Zeiss scanning electron microscopes.

“With ELYRA, researchers can investigate the structural arrangement of one or multiple proteins, reveal the ultrastructure of cell organelles in 2D and 3D as well as map and count molecules within a structure. Sophisticated algorithms relate photon statistics to precision information in all directions, so researchers can display their structures fully rendered in 3D,” said Dr. Klaus Weisshart, ELYRA product manager at Zeiss.

Related Links:

Zeiss



comments powered by Disqus

Channels

Genomics/Proteomics

view channel
Image: Alternative splicing produces two protein isoforms (Photo courtesy of Wikimedia Commons).

Key Regulator of Cancer-Inducing Alternative Splicing Identified

Cancer researchers have identified the splicing factor RBM4 (RNA-binding protein 4) as a key determinant in processes that prevent tumor development and spread. RBM4 is known to be crucial to gene splicing... Read more

Drug Discovery

view channel

Ibuprofen May Restore Immune Function in Older Individuals

New research suggests that macrophages from the lungs of old mice respond differently to infections than those of young mice, and ibuprofen given to the mice reversed these changes. New research using lab mice suggests that the solution to more youthful immune function might already be a common over-the-counter pain reliever.... Read more

Therapeutics

view channel
Image: Hair follicle (blue) being attacked by T cells (green) (Photo courtesy of Christiano Lab/Columbia University Medical Center).

Hair Restoration Method Clones Patients’ Cells to Grow New Hair Follicles

Researchers have developed of a new hair restoration approach that uses a patient’s cells to grow new hair follicles. In addition, the [US] Food and Drugs Administration (FDA) recently approved a new drug... Read more

Business

view channel

Partnership Established to Decode Bowel Disease

23andMe (Mountain View, CA,USA), a personal genetics company, is collaborating with Pfizer, Inc. (New York, NY, USA), in which the companies will seek to enroll 10,000 people with inflammatory bowel disease (IBD) in a research project designed to explore the genetic factors associated with the onset, progression, severity,... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.