Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
Micromedic Technologies

New Module Enables Super-Resolution Microscopy of Cell Organelles in Three Dimensions

By BiotechDaily International staff writers
Posted on 20 Nov 2013
Print article
Image: The ELYRA super-resolution microscope system enables 3D-PALM imagery (Photo courtesy of Zeiss).
Image: The ELYRA super-resolution microscope system enables 3D-PALM imagery (Photo courtesy of Zeiss).
Biotech researchers and other life scientists who employ advanced microscopy techniques are now able to move up to a state-of-the-art super-resolution microscopy system.

Zeiss (Jena, Germany) has introduced ELYRA P.1, a new module that makes possible three-dimensional (3D) super-resolution photoactivated localization microscopy (PALM) for endogenously-expressed photo-switchable fluorescent proteins.

In PALM, photo-switchable fluorescent molecules are sparsely activated so that only one out of many will be in its on-state within a single point spread function (PSF). In 3D, the PSF shape codes for the z-position. The localizations are plotted in a new image to create the super-resolved image. ELYRA P.1 achieves resolutions in the range of 20–30 nanometers laterally and 50–80 nanometers axially. The ELYRA P.1 module captures highly resolved structures in 3D, while treating the sample so gently that it remains available for long-term observation.

The ELYRA system can be integrated with the Zeiss laser scanning microscopes LSM 710 or LSM 780. In addition, ELYRA works seamlessly together with Zeiss scanning electron microscopes.

“With ELYRA, researchers can investigate the structural arrangement of one or multiple proteins, reveal the ultrastructure of cell organelles in 2D and 3D as well as map and count molecules within a structure. Sophisticated algorithms relate photon statistics to precision information in all directions, so researchers can display their structures fully rendered in 3D,” said Dr. Klaus Weisshart, ELYRA product manager at Zeiss.

Related Links:

Zeiss



Print article

Channels

Genomics/Proteomics

view channel
Image: Top: Overview of the structure of T-STAR STAR domain in complex with AUUAAA RNA. Bottom left: close up view of the specific recognition of the RNA. Bottom right: close up view of the KH dimerization interface (Photo courtesy of the University of Leicester).

Atomic Structures of Alternative Splicing Regulator Proteins May Lead to New Anticancer Drugs

A detailed structural analysis of two RNA-binding proteins that regulate alternate splicing of gene expression, which can lead to various types of cancer, is expected to aid in the development of drugs... Read more

Drug Discovery

view channel
Image: Naturally occurring clay from Kisameet Bay, Canada, exhibits potent antibacterial activity against multidrug-resistant pathogens (Photo courtesy of Kisameet Glacial Clay Inc.).

Antibiotic Resistant Bacteria Succumb to Treatment with Unique Natural Clay

A team of Canadian medical microbiologists has demonstrated the potential use of a unique type of natural clay for treating pathogenic bacteria that have become resistant to the commonly used antibiotics.... Read more

Business

view channel

Purchase Agreement to Boost Ebola Vaccine Development

A deal to help boost development of a vaccine to protect against Ebolavirus infection was finalized at the recent Davos Conference in Switzerland. Gavi (Geneva, Switzerland), the global alliance for vaccines and immunizations, announced that it would spend five million USD to purchase the Ebola vaccine under development... Read more
Copyright © 2000-2016 Globetech Media. All rights reserved.