Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING
JIB
GLOBETECH PUBLISHING

Regenerative Medicine Aided by Nanotechnology Strategies

By BiotechDaily International staff writers
Posted on 19 Nov 2013
Nanotechnology may provide new approaches for regenerative medicine, including better ways to restore or enhance damaged tissues, according to a review article by Taiwanese researchers.

Published October 2013 in the journal Science and Technology of Advanced Materials, the study reported on the current state of knowledge on nanotechnology with a focus on stem cell biology applications. Stem cells are an important potential source for repairing injured human tissues. Researchers have found that the adhesion, growth, and differentiation of stem cells are most probably controlled by their surrounding microenvironment, which contains both physical and chemical signals. These signals include the “nanotopography” of the complicated extracellular matrix that comprises a network for human tissues.

Dr. Yang-Kao Wang and colleagues from Taipei Medical University (Taipei City, Taiwan) described in their article studies showing how this nanotopography (which includes nanosized pores, ridges, and grooves) plays critical roles in the behavior and fate of stem cells. The authors also discussed the application of nanoparticles to stem cell isolation, tracking and imaging; how to convert nanotechnology tools from two to three dimensions; and the potential limitations of using nanomaterials in stem cell biology.

The authors concluded that “understanding [the] interactions of nanomaterials with stem cells may provide knowledge applicable to [the development of improved] cell-scaffold combinations in tissue engineering and regenerative medicine.”

Related Links:

Taipei Medical University



comments powered by Disqus

Channels

Genomics/Proteomics

view channel
Image: Differences in the structure of a small lung artery (top row) and heart cross section (lower row) of rodents without disease (far left column); with pulmonary hypertension (middle) and a diseased rodent treated with the HDL peptide (right). Note the much narrowed lung artery, and thick walls and larger chamber of the heart in the diseased animal and improvements with 4F peptide treatment (Photo courtesy of UCLA - University of California, Los Angeles).

Apolipoprotein A-1 Mimetic Peptide Reverses Pulmonary Hypertension in Rodent Models

A small peptide that mimics the activity of apolipoprotein A-1 (apo A-1), the main protein component of the high density lipoproteins (HDL), counteracted the effects of oxidized lipids and alleviated symptoms... Read more

Drug Discovery

view channel
Image: The five stages of biofilm development: (1) Initial attachment, (2) Irreversible attachment, (3) Maturation I, (4) Maturation II, and (5) Dispersion. Each stage of development in the diagram is paired with a photomicrograph of a developing P. aeruginosa biofilm. All photomicrographs are shown to same scale (Photo courtesy of Wikimedia Commons).

Ionic Liquids Disperse Bacterial Biofilms and Increase Antibiotic Susceptibility

The ionic liquid choline-geranate was shown to effectively eliminate the protective biofilm generated by bacteria such as Salmonella enterica and Pseudomonas aeruginosa and to significantly increase the... Read more

Therapeutics

view channel
Image: Hair follicle (blue) being attacked by T cells (green) (Photo courtesy of Christiano Lab/Columbia University Medical Center).

Hair Restoration Method Clones Patients’ Cells to Grow New Hair Follicles

Researchers have developed of a new hair restoration approach that uses a patient’s cells to grow new hair follicles. In addition, the [US] Food and Drugs Administration (FDA) recently approved a new drug... Read more

Business

view channel

Partnership Established to Decode Bowel Disease

23andMe (Mountain View, CA,USA), a personal genetics company, is collaborating with Pfizer, Inc. (New York, NY, USA), in which the companies will seek to enroll 10,000 people with inflammatory bowel disease (IBD) in a research project designed to explore the genetic factors associated with the onset, progression, severity,... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.