Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING LLC
GLOBETECH MEDIA
GLOBETECH PUBLISHING LLC

Regenerative Medicine Aided by Nanotechnology Strategies

By BiotechDaily International staff writers
Posted on 19 Nov 2013
Nanotechnology may provide new approaches for regenerative medicine, including better ways to restore or enhance damaged tissues, according to a review article by Taiwanese researchers.

Published October 2013 in the journal Science and Technology of Advanced Materials, the study reported on the current state of knowledge on nanotechnology with a focus on stem cell biology applications. Stem cells are an important potential source for repairing injured human tissues. Researchers have found that the adhesion, growth, and differentiation of stem cells are most probably controlled by their surrounding microenvironment, which contains both physical and chemical signals. These signals include the “nanotopography” of the complicated extracellular matrix that comprises a network for human tissues.

Dr. Yang-Kao Wang and colleagues from Taipei Medical University (Taipei City, Taiwan) described in their article studies showing how this nanotopography (which includes nanosized pores, ridges, and grooves) plays critical roles in the behavior and fate of stem cells. The authors also discussed the application of nanoparticles to stem cell isolation, tracking and imaging; how to convert nanotechnology tools from two to three dimensions; and the potential limitations of using nanomaterials in stem cell biology.

The authors concluded that “understanding [the] interactions of nanomaterials with stem cells may provide knowledge applicable to [the development of improved] cell-scaffold combinations in tissue engineering and regenerative medicine.”

Related Links:

Taipei Medical University



Channels

Genomics/Proteomics

view channel
Image: Pluristem technicians produce PLacental eXpanded (PLX) cells in the company\'s state-of-the-art facility (Photo courtesy of Pluristem Therapeutics).

Placental Cells Secrete Factors That Protect Nerves from Ischemic Damage

Cells derived from placenta have been found to protect PC12 cells—rat-derived cells that behave similarly to and are used as stand-ins to study human nerve cells—in a culture-based ischemic stroke model.... Read more

Drug Discovery

view channel
Image: Researchers have attached two drugs—TRAIL and Dox—onto graphene strips. TRAIL is most effective when delivered to the external membrane of a cancer cell, while Dox is most effective when delivered to the nucleus, so the researchers designed the system to deliver the drugs sequentially, with each drug hitting a cancer cell where it will do the most damage (Photo courtesy of Dr. Zhen Gu, North Carolina State University).

Anticancer Drug Delivery System Utilizes Graphene Strip Transporters

The ongoing search by cancer researchers for targeted drug delivery systems has generated a novel approach that uses graphene strips to transport simultaneously the anticancer agents TRAIL (tumor necrosis... Read more

Biochemistry

view channel

Blocking Enzyme Switch Turns Off Tumor Growth in T-Cell Acute Lymphoblastic Leukemia

Researchers recently reported that blocking the action of an enzyme “switch” needed to activate tumor growth is emerging as a practical strategy for treating T-cell acute lymphoblastic leukemia. An estimated 25% of the 500 US adolescents and young adults diagnosed yearly with this aggressive disease fail to respond to... Read more

Therapeutics

view channel
Image: Cancer cells infected with tumor-targeted oncolytic virus (red). Green indicates alpha-tubulin, a cell skeleton protein. Blue is DNA in the cancer cell nuclei (Photo courtesy of Dr. Rathi Gangeswaran, Bart’s Cancer Institute).

Innovative “Viro-Immunotherapy” Designed to Kill Breast Cancer Cells

A leading scientist has devised a new treatment that employs viruses to kill breast cancer cells. The research could lead to a promising “viro-immunotherapy” for patients with triple-negative breast cancer,... Read more

Business

view channel

Program Designed to Provide High-Performance Computing Cluster Systems for Bioinformatics Research

Dedicated Computing (Waukesha, WI, USA), a global technology company, reported that it will be participating in the Intel Cluster Ready program to deliver integrated high-performance computing cluster solutions to the life sciences market. Powered by Intel Xeon processors, Dedicated Computing is providing a range of... Read more
 
Copyright © 2000-2015 Globetech Media. All rights reserved.