We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




3D Culture Designed to Grow Miniature Pancreas

By LabMedica International staff writers
Posted on 30 Oct 2013
Print article
Image: A new 3D culture method allows cell material from mice to grow vividly in tree-like structures (Photo courtesy of University of Copenhagen).
Image: A new 3D culture method allows cell material from mice to grow vividly in tree-like structures (Photo courtesy of University of Copenhagen).
An international team of researchers has successfully developed a three-dimensional (3D) approach to grow miniature pancreas from progenitor cells. The next objective of the research is to use this technology in the fight against diabetes.

The research findings published November 1, 2013, in the journal Development. Prof. Anne Grapin-Botton and her coworkers from the University of Copenhagen (Denmark) have developed a 3D culture technology that enables the effective expansion of pancreatic cells. The new method allows the cell components from mice to grow vividly in picturesque tree-like structures. The technique has great long-term possibilities in building miniature human pancreas from human stem cells. These human miniature organs would be useful as models to evaluate new drugs quickly and effectively and without resorting to animal models.

“The new method allows the cell material to take a three-dimensional shape enabling them to multiply more freely. It's like a plant where you use effective fertilizer, think of the laboratory like a garden and the scientist being the gardener,” said Prof. Grapin-Botton.

The cells do not flourish and develop all by themselves, and a minimum of four pancreatic cells close together is required for ensuing organoid development. “We found that the cells of the pancreas develop better in a gel in three-dimensions than when they are attached and flattened at the bottom of a culture plate. Under optimal conditions, the initial clusters of a few cells have proliferated into 40,000 cells within a week. After growing a lot, they transform into cells that make either digestive enzymes or hormones like insulin and they self-organize into branched pancreatic organoids that are amazingly similar to the pancreas,” added Prof. Grapin-Botton.

The scientists used this system to find that the cells of the pancreas are sensitive to their physical environment such as to contact with other cells and the stiffness of the gel. An effective cellular therapy for diabetes is dependent on the generation of sufficient quantities of functional beta cells. Recent studies have enabled the production of pancreatic precursors but efforts to expand these cells and differentiate them into insulin-producing beta cells have proved a challenge.

“We think this is an important step towards the production of cells for diabetes therapy, both to produce mini-organs for drug testing and insulin-producing cells as spare parts. We show that the pancreatic cells care not only about how you feed them but need to be grown in the right physical environment. We are now trying to adapt this method to human stem cells,” concluded Prof. Grapin-Botton.

Related Links:

University of Copenhagen


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
New
Gold Member
Plasma Control
Plasma Control Level 1

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The groundbreaking treatment approach has shown promise in hard-to-treat cancers (Photo courtesy of 123RF)

Genetic Testing Combined With Personalized Drug Screening On Tumor Samples to Revolutionize Cancer Treatment

Cancer treatment typically adheres to a standard of care—established, statistically validated regimens that are effective for the majority of patients. However, the disease’s inherent variability means... Read more

Microbiology

view channel
Image: Microscope image showing human colorectal cancer tumor with Fusobacterium nucleatum stained in a red-purple color (Photo courtesy of Fred Hutch Cancer Center)

Mouth Bacteria Test Could Predict Colon Cancer Progression

Colon cancer, a relatively common but challenging disease to diagnose, requires confirmation through a colonoscopy or surgery. Recently, there has been a worrying increase in colon cancer rates among younger... Read more

Pathology

view channel
Image: Fingertip blood sample collection on the Babson Handwarmer (Photo courtesy of Babson Diagnostics)

Unique Hand-Warming Technology Supports High-Quality Fingertip Blood Sample Collection

Warming the hand is an effective way to facilitate blood collection from a fingertip, yet off-the-shelf solutions often do not fulfill laboratory requirements. Now, a unique hand-warming technology has... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.