Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC
PZ HTL SA

Programming Language Designed to Construct Synthetic DNA

By BiotechDaily International staff writers
Posted on 24 Oct 2013
Image: An artist’s rendering shows DNA structures and a chemical reaction “program” on the screen. A “chemical computer” executes the molecular program (Photo courtesy of Yan Liang, L2XY2.com).
Image: An artist’s rendering shows DNA structures and a chemical reaction “program” on the screen. A “chemical computer” executes the molecular program (Photo courtesy of Yan Liang, L2XY2.com).
Image: An example of a chemical program. Here, A, B, and C are different chemical species (Photo courtesy of Yan Liang, L2XY2.com).
Image: An example of a chemical program. Here, A, B, and C are different chemical species (Photo courtesy of Yan Liang, L2XY2.com).
Chemists and biotech researchers may soon be able to use a structured series of instructions to “program” how DNA molecules interact in a test tube or cell, similar to using a programming language to write computer code.

A team of investigators, led by the University of Washington (UW; Seattle, USA), has developed a programming language for chemistry that it hopes will streamline efforts to design a network that can guide the behavior of chemical-reaction amalgams in the same manner that embedded electronic controllers guide robots, cars, and other devices. In medicine, such networks could serve as “smart” drug deliverers or disease detectors at the cellular level.

The study’s findings were published online September 29, 2013, in the journal Nature Nanotechnology. Chemists and educators teach and use chemical reaction networks, 100-year-old language of equations that describes how mixtures of chemicals behave. The UW engineers take this language an additional step and use it to write programs that direct the movement of customized molecules.

“We start from an abstract, mathematical description of a chemical system, and then use DNA to build the molecules that realize the desired dynamics,” said corresponding author Dr. Georg Seelig, a UW assistant professor of electrical engineering and of computer science and engineering. “The vision is that eventually, you can use this technology to build general-purpose tools.”

Currently, when a biologist or chemist makes a specific type of molecular network, the engineering process is complicated, cumbersome, and difficult to repurpose for constructing other systems. The UW engineers wanted to devise a framework that gives scientists more flexibility. Dr. Seelig compares this new approach to programming languages that tell a computer what to do. “I think this is appealing because it allows you to solve more than one problem,” he said. “If you want a computer to do something else, you just reprogram it. This project is very similar in that we can tell chemistry what to do.”

Humans and other organisms already have complex networks of nano-sized molecules that help to control cells and keep the body in line. Scientists now are finding ways to design synthetic systems that behave similar to biologic ones with the hope that synthetic molecules could support the body’s natural functions. To achieve this, a system is needed to create synthetic DNA molecules that vary according to their specific functions.

The new application is not yet ready to be utilized in medicine, but future uses could include using this framework to make molecules that self-assemble within cells and serve as “smart” sensors. These could be embedded in a cell, then programmed to identify abnormalities and respond as required, possibly by delivering drugs directly to those cells.

Drs. Seelig and colleague Eric Klavins, a UW associate professor of electrical engineering, recently received USD 2 million from the National Science Foundation (Washington DC, USA) as part of a national initiative to enhance research in molecular programming. The new language will be used to support that larger initiative, according to Dr. Seelig.

Related Links:

University of Washington



comments powered by Disqus

Channels

Genomics/Proteomics

view channel

New Program Encourages Wide Distribution of Genomic Data

A new data sharing program allows genomics researchers and practitioners to analyze, visualize, and share raw sequence data for individual patients or across populations straight from a local browser. The sequencing revolution is providing the raw data required to identify the genetic variants underlying rare diseases... Read more

Drug Discovery

view channel
Image: The nano-cocoon drug delivery system is biocompatible, specifically targets cancer cells, can carry a large drug load, and releases the drugs very quickly once inside the cancer cell. Ligands on the surface of the \"cocoon\" trick cancer cells into consuming it. Enzymes (the “worms\" in this image) inside the cocoon are unleashed once inside the cell, destroying the cocoon and releasing anticancer drugs into the cell (Photo courtesy of Dr. Zhen Gu, North Carolina State University).

Novel Anticancer Drug Delivery System Utilizes DNA-Based Nanocapsules

A novel DNA-based drug delivery system minimizes damage to normal tissues by utilizing the acidic microenvironment inside cancer cells to trigger the directed release of the anticancer drug doxorubicin (DOX).... Read more

Business

view channel

Interest in Commercial Applications for Proteomics Continues to Grow

Increasing interest in the field of proteomics has led to a series of agreements between private proteomic companies and academic institutions as well as deals between pharmaceutical companies and novel proteomics innovator biotech companies. Proteomics is the study of the structure and function of proteins.... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.