We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




New Process to Create Artificial Cell Membranes Developed

By LabMedica International staff writers
Posted on 17 Oct 2013
Print article
Image: Quantitative deposition of lipid monolayers yielded vesicles with fluorescence variance in agreement with model predictions (Photo courtesy of Scripps Research Institute, via Nature Chemistry).
Image: Quantitative deposition of lipid monolayers yielded vesicles with fluorescence variance in agreement with model predictions (Photo courtesy of Scripps Research Institute, via Nature Chemistry).
Scientists have developed a highly programmable and controlled platform for preparing and experimentally studying synthetic cell-like membrane-enclosed structures.

Understanding the myriad biochemical roles of membranes surrounding cells and inside them requires the ability to prepare realistic synthetic versions of these complex multilayered structures, a long-standing challenge. In a study published in the journal Nature Chemistry, online September 29, 2013, scientists at The Scripps Research Institute (TSRI; Jupiter, FL, USA) describe an innovative method they have developed for studying cell-like membrane-enclosed vesicles—layer-by-layer phospholipid membrane assembly on microfluidic droplets, a route to structures with defined compositional asymmetry and lamellarity.

Starting with a technique commonly used to deposit molecules on a solid surface, Langmuir-Blodgett deposition, the scientists repurposed the approach to work on liquid objects. They engineered a microfluidic device containing an immobilized array of microscopic cups, each trapping a single droplet of water bathed in oil and lipids. The arrayed trapped droplets are then ready to serve as a foundation for building up a series of lipid layers like coats of paint. “Layer-by-layer membrane assembly allows us to create synthetic cells with membranes of arbitrary complexity at the molecular and supramolecular scale,” said TSRI Assistant Professor Brian Paegel, who authored the study with Research Associate Sandro Matosevic; “We can now control the molecular composition of the inner and outer layers of a bilayer membrane, and even assemble multilayered membranes that resemble the envelope of the cell nucleus.”

The lipid-coated water droplets are first bathed in water. As the water/oil interface encounters the trapped droplets, a second lipid layer coats the droplets and transforms them into unilamellar vesicles. Bathing the vesicles in oil/lipid deposits a third lipid layer, which is followed by deposition of a final layer of lipids. The final product after these three phase exchanges is an immobilized array of double-bilayer vesicles.

“The computer-controlled microfluidic circuits we have constructed will allow us to assemble synthetic cells not only from biologically derived lipids, but from any amphiphile and to measure important chemical and physical parameters, such as permeability and stability,” said Prof. Paegel.

Related Links:
The Scripps Research Institute



Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
HLX
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay

Print article

Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Molecular Diagnostics

view channel
Image: MOF materials efficiently enrich cfDNA and cfRNA in blood through simple operational process (Photo courtesy of Science China Press)

Blood Circulating Nucleic Acid Enrichment Technique Enables Non-Invasive Liver Cancer Diagnosis

The ability to diagnose diseases early can significantly enhance the effectiveness of clinical treatments and improve survival rates. One promising approach for non-invasive early diagnosis is the use... Read more

Hematology

view channel
Image: The low-cost portable device rapidly identifies chemotherapy patients at risk of sepsis (Photo courtesy of 52North Health)

POC Finger-Prick Blood Test Determines Risk of Neutropenic Sepsis in Patients Undergoing Chemotherapy

Neutropenia, a decrease in neutrophils (a type of white blood cell crucial for fighting infections), is a frequent side effect of certain cancer treatments. This condition elevates the risk of infections,... Read more

Pathology

view channel
Image: The OvaCis Rapid Test discriminates benign from malignant epithelial ovarian cysts (Photo courtesy of INEX)

Intra-Operative POC Device Distinguishes Between Benign and Malignant Ovarian Cysts within 15 Minutes

Ovarian cysts represent a significant health issue for women globally, with up to 10% experiencing this condition at some point in their lives. These cysts form when fluid collects within a thin membrane... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.