Features | Partner Sites | Information | LinkXpress
Sign In
PZ HTL SA
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC

New Process to Create Artificial Cell Membranes Developed

By BiotechDaily International staff writers
Posted on 17 Oct 2013
Image: Quantitative deposition of lipid monolayers yielded vesicles with fluorescence variance in agreement with model predictions (Photo courtesy of Scripps Research Institute, via Nature Chemistry).
Image: Quantitative deposition of lipid monolayers yielded vesicles with fluorescence variance in agreement with model predictions (Photo courtesy of Scripps Research Institute, via Nature Chemistry).
Scientists have developed a highly programmable and controlled platform for preparing and experimentally studying synthetic cell-like membrane-enclosed structures.

Understanding the myriad biochemical roles of membranes surrounding cells and inside them requires the ability to prepare realistic synthetic versions of these complex multilayered structures, a long-standing challenge. In a study published in the journal Nature Chemistry, online September 29, 2013, scientists at The Scripps Research Institute (TSRI; Jupiter, FL, USA) describe an innovative method they have developed for studying cell-like membrane-enclosed vesicles—layer-by-layer phospholipid membrane assembly on microfluidic droplets, a route to structures with defined compositional asymmetry and lamellarity.

Starting with a technique commonly used to deposit molecules on a solid surface, Langmuir-Blodgett deposition, the scientists repurposed the approach to work on liquid objects. They engineered a microfluidic device containing an immobilized array of microscopic cups, each trapping a single droplet of water bathed in oil and lipids. The arrayed trapped droplets are then ready to serve as a foundation for building up a series of lipid layers like coats of paint. “Layer-by-layer membrane assembly allows us to create synthetic cells with membranes of arbitrary complexity at the molecular and supramolecular scale,” said TSRI Assistant Professor Brian Paegel, who authored the study with Research Associate Sandro Matosevic; “We can now control the molecular composition of the inner and outer layers of a bilayer membrane, and even assemble multilayered membranes that resemble the envelope of the cell nucleus.”

The lipid-coated water droplets are first bathed in water. As the water/oil interface encounters the trapped droplets, a second lipid layer coats the droplets and transforms them into unilamellar vesicles. Bathing the vesicles in oil/lipid deposits a third lipid layer, which is followed by deposition of a final layer of lipids. The final product after these three phase exchanges is an immobilized array of double-bilayer vesicles.

“The computer-controlled microfluidic circuits we have constructed will allow us to assemble synthetic cells not only from biologically derived lipids, but from any amphiphile and to measure important chemical and physical parameters, such as permeability and stability,” said Prof. Paegel.

Related Links:
The Scripps Research Institute




comments powered by Disqus

Channels

Genomics/Proteomics

view channel
Image: This novel, flexible film that can react to light is a promising step toward an artificial retina (Photo courtesy of the American Chemical Society).

Novel Nanofilm May Be Artificial Retina Precursor

Researchers have used advanced nanotechnology techniques to develop a light-sensitive film that has potential for future artificial retina applications. Investigators at the Hebrew University of Jerusalem... Read more

Drug Discovery

view channel
Image: Disruption and removal of malaria parasites by the experimental drug (+)-SJ733 (Photo courtesy of the University of California, San Francisco).

Experimental Antimalaria Drug Induces the Immune System to Destroy Infected Red Blood Cells

An experimental drug for the treatment of malaria was found to induce morphological changes in infected erythrocytes that enabled the immune system to recognize and eliminate them. Investigators at... Read more

Biochemistry

view channel

Blocking Enzyme Switch Turns Off Tumor Growth in T-Cell Acute Lymphoblastic Leukemia

Researchers recently reported that blocking the action of an enzyme “switch” needed to activate tumor growth is emerging as a practical strategy for treating T-cell acute lymphoblastic leukemia. An estimated 25% of the 500 US adolescents and young adults diagnosed yearly with this aggressive disease fail to respond to... Read more

Business

view channel

R&D Partnership Initiated to Reduce Development Time for New Drugs

nanoPET Pharma, GmbH (Berlin, Germany) signed an open-ended framework contract with the international pharmaceutical company Boehringer Ingelheim (Ridgefield, CT, USA). By developing customized contrast agents for research in both basic and preclinical studies, nanoPET Pharma will contribute to the enhancement of Boehringer... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.