Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH MEDIA
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC

Quantitative Phase Technology Using Silicon Designed to Visualize Cellular Processes

By BiotechDaily International staff writers
Posted on 16 Oct 2013
A team of scientists has figured out how to quantitatively observe cellular processes taking place on “lab-on-a-chip” devices in a silicon setting.

The new technology should be useful in drug development as well as disease diagnosis, researchers working on the project. In a study published October 2, 2013, in Nature’s online journal Scientific Reports, the investigators reported that it overcame past limitations on quantitative microscopy through an opaque media by working with a new combination of near infrared light and a technique called quantitative phase imaging. The technology is approximately 10-years old and uses shifts in phases of light, not staining techniques, to aid specimen imaging—warranting the term “label-free.”

“To the best of our knowledge, this is the first demonstration of quantitative phase imaging of cellular structure and function in silicon environment,” said Assistant Professor of physics Dr. Samarendra Mohanty, head of the biophysics and physiology laboratory at University of Texas (UT) at Arlington (USA), and corresponding author of the article.

The UT at Arlington and Massachusetts Institute of Technology (MIT; Cambridge, MA, USA) group of scientists was able to study specimens through a silicon wafer in two cases. In one, they achieved full-field imaging of the features of red blood cells to nanometer thickness accuracy. They observed, in another specimen, the dynamic variation of human embryonic kidney cells in response to variations in salt concentration. Dr. Mohanty believes that his group’s current research on near-infrared quantitative-phase imaging can lead to noninvasive, label-free monitoring of neuronal activities.

“Silicon-based microdevices known as labs-on-a-chip are revolutionizing high throughput analysis of cells and molecules for disease diagnosis and screening of drug effects. However, very little progress has been made in the optical characterization of samples in these systems,” said Dr. Bipin Joshi, a recent graduate and lead author of the study. “The technology we’ve developed is well-suited to meet this need.”

Dr. Barman, now an assistant professor at Johns Hopkins University (Baltimore, MD, USA), stated that this study is an excellent example of the type of research he envisages doing, projects driven by needs of the biomedical community and continually pushing the edge of biophotonic technology. “We envision that this significantly expands the visualization possible in silicon based microelectronic and micromechanical devices,” he said.

Related Links:
University of Texas at Arlington
Massachusetts Institute of Technology



Channels

Drug Discovery

view channel
Image: Molecular model of the protein Saposin C (Photo courtesy of Wikimedia Commons).

Nanovesicles Kill Human Lung Cancer Cells in Culture and in a Mouse Xenograft Model

Nanovesicles assembled from the protein Saposin C (SapC) and the phospholipid dioleoylphosphatidylserine (DOPS) were shown to be potent inhibitors of lung cancer cells in culture and in a mouse xenograft model.... Read more

Biochemistry

view channel

Possible New Target Found for Treating Brain Inflammation

Scientists have identified an enzyme that produces a class of inflammatory lipid molecules in the brain. Abnormally high levels of these molecules appear to cause a rare inherited eurodegenerative disorder, and that disorder now may be treatable if researchers can develop suitable drug candidates that suppress this enzyme.... Read more

Business

view channel

Roche Acquires Signature Diagnostics to Advance Translational Research

Roche (Basel, Switzerland) will advance translational research for next generation sequencing (NGS) diagnostics by leveraging the unique expertise of Signature Diagnostics AG (Potsdam, Germany) in biobanks and development of novel NGS diagnostic assays. Signature Diagnostics is a privately held translational oncology... Read more
 
Copyright © 2000-2015 Globetech Media. All rights reserved.