Features | Partner Sites | Information | LinkXpress
Sign In
PZ HTL SA
GLOBETECH PUBLISHING
GLOBETECH PUBLISHING

Quantitative Phase Technology Using Silicon Designed to Visualize Cellular Processes

By BiotechDaily International staff writers
Posted on 16 Oct 2013
A team of scientists has figured out how to quantitatively observe cellular processes taking place on “lab-on-a-chip” devices in a silicon setting.

The new technology should be useful in drug development as well as disease diagnosis, researchers working on the project. In a study published October 2, 2013, in Nature’s online journal Scientific Reports, the investigators reported that it overcame past limitations on quantitative microscopy through an opaque media by working with a new combination of near infrared light and a technique called quantitative phase imaging. The technology is approximately 10-years old and uses shifts in phases of light, not staining techniques, to aid specimen imaging—warranting the term “label-free.”

“To the best of our knowledge, this is the first demonstration of quantitative phase imaging of cellular structure and function in silicon environment,” said Assistant Professor of physics Dr. Samarendra Mohanty, head of the biophysics and physiology laboratory at University of Texas (UT) at Arlington (USA), and corresponding author of the article.

The UT at Arlington and Massachusetts Institute of Technology (MIT; Cambridge, MA, USA) group of scientists was able to study specimens through a silicon wafer in two cases. In one, they achieved full-field imaging of the features of red blood cells to nanometer thickness accuracy. They observed, in another specimen, the dynamic variation of human embryonic kidney cells in response to variations in salt concentration. Dr. Mohanty believes that his group’s current research on near-infrared quantitative-phase imaging can lead to noninvasive, label-free monitoring of neuronal activities.

“Silicon-based microdevices known as labs-on-a-chip are revolutionizing high throughput analysis of cells and molecules for disease diagnosis and screening of drug effects. However, very little progress has been made in the optical characterization of samples in these systems,” said Dr. Bipin Joshi, a recent graduate and lead author of the study. “The technology we’ve developed is well-suited to meet this need.”

Dr. Barman, now an assistant professor at Johns Hopkins University (Baltimore, MD, USA), stated that this study is an excellent example of the type of research he envisages doing, projects driven by needs of the biomedical community and continually pushing the edge of biophotonic technology. “We envision that this significantly expands the visualization possible in silicon based microelectronic and micromechanical devices,” he said.

Related Links:
University of Texas at Arlington
Massachusetts Institute of Technology



Channels

Genomics/Proteomics

view channel
Image: Biopsy of small bowel showing celiac disease manifested by blunting of villi, crypt hyperplasia, and lymphocyte infiltration of crypts (Photo courtesy of Wikimedia Commons).

Reduced Elafin Levels Associated with Celiac Disease Bowel Inflammation

Levels of the enzyme elafin, an endogenous serine protease inhibitor, were lower in the small intestinal epithelium of patients with active celiac disease (CD) as compared to similar tissue from control patients.... Read more

Drug Discovery

view channel

Retinoic Acid Prevents Precancerous Breast Cells from Progressing to Full-Blown Cancer

Retinoic acid, a derivative of vitamin A, was found to prevent pre-cancerous breast cells from progressing to full-blown cancer but did not have any effect on breast tumor cells. Investigators at Thomas Jefferson University (Philadelphia, PA, USA) worked with a novel breast cancer model that had been developed by treating... Read more

Biochemistry

view channel

Mitochondrial Cause of Aging Can Be Reversed

Researchers have found a cause of aging in lab animals that can be reversed, possibly providing an avenue for new treatments for age-related diseases including type 2 diabetes, cancer, muscle wasting, and inflammatory diseases. The researchers plan to begin human trials late 2014. The study, which was published December... Read more

Therapeutics

view channel

Cytokine Identified That Causes Mucositis in Cancer Therapy Patients

The action of the cytokine interleukin 1-beta (IL-1beta) has been found to underlie the onset of mucositis, a common, severe side effect of chemotherapy and irradiation of cancer patients. Mucositis occurs as a result of cell death in reaction to chemo- or radiotherapy. The mucosal lining of the mouth becomes thin, may... Read more

Business

view channel

Analytical Sciences Trade Fair Declared a Rousing Success

Organizers of this year's 24th "analytica" biosciences trade fair have reported significant increases in both the number of visitors and exhibitors compared to the 2012 event. The analytica trade fair for laboratory technology, analysis, and biotechnology has been held at the Munich (Germany) Trade Fair Center every... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.