Features | Partner Sites | Information | LinkXpress
Sign In
JIB
European Federation of Biotechnology
BioConferenceLive

Quantitative Phase Technology Using Silicon Designed to Visualize Cellular Processes

By BiotechDaily International staff writers
Posted on 16 Oct 2013
A team of scientists has figured out how to quantitatively observe cellular processes taking place on “lab-on-a-chip” devices in a silicon setting.

The new technology should be useful in drug development as well as disease diagnosis, researchers working on the project. In a study published October 2, 2013, in Nature’s online journal Scientific Reports, the investigators reported that it overcame past limitations on quantitative microscopy through an opaque media by working with a new combination of near infrared light and a technique called quantitative phase imaging. The technology is approximately 10-years old and uses shifts in phases of light, not staining techniques, to aid specimen imaging—warranting the term “label-free.”

“To the best of our knowledge, this is the first demonstration of quantitative phase imaging of cellular structure and function in silicon environment,” said Assistant Professor of physics Dr. Samarendra Mohanty, head of the biophysics and physiology laboratory at University of Texas (UT) at Arlington (USA), and corresponding author of the article.

The UT at Arlington and Massachusetts Institute of Technology (MIT; Cambridge, MA, USA) group of scientists was able to study specimens through a silicon wafer in two cases. In one, they achieved full-field imaging of the features of red blood cells to nanometer thickness accuracy. They observed, in another specimen, the dynamic variation of human embryonic kidney cells in response to variations in salt concentration. Dr. Mohanty believes that his group’s current research on near-infrared quantitative-phase imaging can lead to noninvasive, label-free monitoring of neuronal activities.

“Silicon-based microdevices known as labs-on-a-chip are revolutionizing high throughput analysis of cells and molecules for disease diagnosis and screening of drug effects. However, very little progress has been made in the optical characterization of samples in these systems,” said Dr. Bipin Joshi, a recent graduate and lead author of the study. “The technology we’ve developed is well-suited to meet this need.”

Dr. Barman, now an assistant professor at Johns Hopkins University (Baltimore, MD, USA), stated that this study is an excellent example of the type of research he envisages doing, projects driven by needs of the biomedical community and continually pushing the edge of biophotonic technology. “We envision that this significantly expands the visualization possible in silicon based microelectronic and micromechanical devices,” he said.

Related Links:
University of Texas at Arlington
Massachusetts Institute of Technology



comments powered by Disqus

Channels

Genomics/Proteomics

view channel
Image: A microscope image of a neuron with inclusion (stained orange) caused by Huntington\'s disease (Photo courtesy of Wikimedia Commons).

Molecular Interactions Identified That Block Protein Transfer into Mitochondria of Huntington's Disease Neurons

Researchers have identified a protein complex that interacts with the mutated form of huntingtin protein to impair transport of proteins into the mitochondria of brain cells, which leads to their malfunction... Read more

Drug Discovery

view channel
Image: A mouse mammary gland missing the tumor-suppressor p53 shows expression of ARF (green), now known for a backup role in protecting cells from becoming cancerous. If both p53 and ARF are mutated, the tumors that form are aggressive and may benefit from treatment with anti-inflammatory drugs called JAK inhibitors, currently prescribed for rheumatoid arthritis (Photo courtesy of Raleigh Kladney).

Anti-Inflammatory Drugs May Treat Some Aggressive Rumors

New research raises the possibility that some cancer patients with aggressive tumors may benefit from a class of anti-inflammatory drugs used to treat rheumatoid arthritis. By studying triple-negative... Read more

Therapeutics

view channel

Vaccine Being Developed for Heart Disease Close to Reality

The world’s first vaccine for heart disease is becoming a possibility with researchers demonstrating significant arterial plaque reduction in concept testing in mice. Klaus Ley, MD, from the La Jolla Institute for Allergy and Immunology (LA Jolla, CA, USA), and a vascular immunology specialist, is leading the vaccine... Read more

Business

view channel

A Surge in IPOs Revitalize Investments for the Global Pharma and Biotech

Anti-infective drugs, oncology, and pharmaceutical contract laboratories attract the most investment up to now. The intensified private equity and venture capital (PEVC) deal activity in the global healthcare industry during the recession years, 2008–2010, witnessed a waning post-2010. However, the decline in deals... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.