Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC
PZ HTL SA

Novel Pig Model Closely Mimics Human Helicobacter pylori Infection

By BiotechDaily International staff writers
Posted on 08 Oct 2013
Image: Similar anatomical properties between the stomach of humans and pigs may facilitate study of H. pylori-associated disease. Virginia Tech researchers have demonstrated that H. pylori (arrow) is found in the inner lining of the stomach and near aggregates of immune cells. The picture insert shows the typically spindle-shaped H. pylori magnified 1,000 times (Photo courtesy of Virginia Tech).
Image: Similar anatomical properties between the stomach of humans and pigs may facilitate study of H. pylori-associated disease. Virginia Tech researchers have demonstrated that H. pylori (arrow) is found in the inner lining of the stomach and near aggregates of immune cells. The picture insert shows the typically spindle-shaped H. pylori magnified 1,000 times (Photo courtesy of Virginia Tech).
Researchers have developed a novel pig model of Helicobacter pylori infection that closely mimics human gastric pathology and presents an avenue for studying human effector and regulatory responses toward H. pylori.

H. pylori are helix-shaped, Gram-negative bacteria, about three micrometers long with a diameter of about 0.5 micrometers. They are microaerophilic, requiring oxygen but at a lower concentration than is found in the atmosphere. H. pylori contain a hydrogenase, which can be used to obtain energy by oxidizing molecular hydrogen produced by intestinal bacteria. While more than 50% of the world's population harbor H. pylori in their upper gastrointestinal tract, over 80% of people infected with H. pylori show no symptoms. Acute infection may appear as an acute gastritis with abdominal pain or nausea. Where this develops into chronic gastritis, the symptoms, if present, are often those of non-ulcer dyspepsia: stomach pains, nausea, bloating, belching, and sometimes vomiting or black stool. Individuals infected with H. pylori have a 10% to 20% lifetime risk of developing peptic ulcers and a 1% to 2% risk of acquiring stomach cancer.

Small animals such as mice and gerbils have been used as models for H. pylori infection. However, the immune response generated by these animals was found to differ significantly from that of humans. In a paper published in the October 2013 issue of the journal Infection and Immunity investigators at Virginia Tech (Blacksburg, VA, USA) described a novel pig model for studying H. pylori infection.

Similar to the situation in humans, when pigs were infected with H. pylori, the animals generated an increase in pro-inflammatory CD4+ T helper cells, followed by an increase in CD8+ cytotoxic T cells. Marked rises were found in the levels of mRNA needed by peripheral blood mononuclear cells (PBMCs) for the production of inflammatory proteins such as gamma interferon, perforin, and granzyme.

“Pigs have greater anatomic, physiologic, and immunologic similarities to humans than mice, the main animal model used in biomedical research,” said senior author Dr. Raquel Hontecillas, assistant professor of immunology at Virginia Tech. “The results from our new pig model closely mimic what has been reported in clinical settings, which will allow us to comprehensively and systematically investigate human immune responses to H. pylori.”

Related Links:
Virginia Tech


comments powered by Disqus

Channels

Genomics/Proteomics

view channel
Image: This novel, flexible film that can react to light is a promising step toward an artificial retina (Photo courtesy of the American Chemical Society).

Novel Nanofilm May Be Artificial Retina Precursor

Researchers have used advanced nanotechnology techniques to develop a light-sensitive film that has potential for future artificial retina applications. Investigators at the Hebrew University of Jerusalem... Read more

Drug Discovery

view channel
Image: Disruption and removal of malaria parasites by the experimental drug (+)-SJ733 (Photo courtesy of the University of California, San Francisco).

Experimental Antimalaria Drug Induces the Immune System to Destroy Infected Red Blood Cells

An experimental drug for the treatment of malaria was found to induce morphological changes in infected erythrocytes that enabled the immune system to recognize and eliminate them. Investigators at... Read more

Biochemistry

view channel

Blocking Enzyme Switch Turns Off Tumor Growth in T-Cell Acute Lymphoblastic Leukemia

Researchers recently reported that blocking the action of an enzyme “switch” needed to activate tumor growth is emerging as a practical strategy for treating T-cell acute lymphoblastic leukemia. An estimated 25% of the 500 US adolescents and young adults diagnosed yearly with this aggressive disease fail to respond to... Read more

Business

view channel

R&D Partnership Initiated to Reduce Development Time for New Drugs

nanoPET Pharma, GmbH (Berlin, Germany) signed an open-ended framework contract with the international pharmaceutical company Boehringer Ingelheim (Ridgefield, CT, USA). By developing customized contrast agents for research in both basic and preclinical studies, nanoPET Pharma will contribute to the enhancement of Boehringer... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.