Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING
GLOBETECH PUBLISHING
JIB

Earlier Diagnosis of Melanoma May Soon Become Possible Using T-Rays

By BiotechDaily International staff writers
Posted on 23 Sep 2013
Image: Layers of skin can be probed with terahertz rays in search of signs of skin cancer at its earliest stages of development (Photo courtesy of the [US] National Cancer Institute).
Image: Layers of skin can be probed with terahertz rays in search of signs of skin cancer at its earliest stages of development (Photo courtesy of the [US] National Cancer Institute).
New imaging technology has great potential to diagnose cancer at its earliest and most treatable stages.

Anis Rahman, PhD, president and chief technology officer of Applied Research & Photonics (Harrisburg, PA, USA), reported that malignant melanoma, the most lethal type of skin cancer, begins in pigment-producing cells located in the deepest part of the epidermis (the outer layer of the skin). Biochemical alterations are key characteristics of cancer occur in the melanocytes a long time before mole-like melanomas appear on the skin.

“Terahertz radiation is ideal for looking beneath the skin and detecting early signs of melanoma,” Dr. Rahman said. “T-rays are different from X-rays, which are ‘ionizing’ radiation that can cause damage. T-rays are a form of nonionizing radiation, like ordinary visible light, but they can be focused harmlessly below into the body and capture biochemical signatures of events like the start of cancer.”

T-rays occupy a position in the spectrum of electromagnetic radiation, which includes visible light and X-rays, between microwaves and infrared rays. One of the benefits of T-rays is that they penetrate only a few millimeters through skin, cloth, and other nonmetallic material.

Dr. Rahman’s research on T-rays was made through donated samples of human skin, suggesting that the technology could be valuable in diagnosing melanoma. In addition to developing T-rays for cancer diagnostics, Dr. Rahman’s team has effectively utilized them to measure the real-time absorption rates and penetration in the outer layer of skin of topically applied drugs—measurements that until now had not been possible.

Dr. Rahman presented his findings at a symposium held at the annual American Chemical Society (ACS) 2013 meeting, held September 11, 2013, in Indianapolis (IN, USA).

Related Links:
Applied Research & Photonics


comments powered by Disqus

Channels

Genomics/Proteomics

view channel
Image: A scheme for the generation of induced pluripotent stem cells (IPSC). (1) Isolate and culture donor cells. (2) Transfect stem cell-associated genes into the cells by viral vectors. Red cells indicate the cells expressing the exogenous genes. (3)  Harvest and culture the cells using mitotically inactivated feeder cells. (4) A small subset of the transfected cells forms iPSC cell colonies (Photo courtesy of Wikimedia Commons).

Innovative Technique Produces More Reliable Pluripotent Stem Cells

A recent paper described a more reliable way to induce the formation of pluripotent stem cells (iPSCs) from adult cells in a mouse model. Reliable high-quality iPSCs are needed for the development of... Read more

Drug Discovery

view channel
Image: S-649266 has more robust antibacterial activity than established antibiotics against multidrug-resistant bacteria (Photo courtesy of Shionogi).

Novel Antibiotic Shows Potential for Broad Range of Infections

The emergence of bacterial resistance to known antibacterial agents is becoming a major challenge in treating the infection caused by multi drug resistant (MDR) bacteria. In order to treat bacterial... Read more

Business

view channel

Collaboration of Mayo Clinic and IBM Cognitive Computer Devised to Improve Clinical Trial Research

The Mayo Clinic (Rochester, MN, USA) and IBM (Armonk, NY, USA) recently announced plans to pilot Watson, the IBM cognitive computer, to match patients more rapidly with suitable clinical trials. A proof-of-concept phase is currently ongoing, with the intent to introduce it into clinical use in early 2015.... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.