Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC
GLOBETECH MEDIA

Earlier Diagnosis of Melanoma May Soon Become Possible Using T-Rays

By BiotechDaily International staff writers
Posted on 23 Sep 2013
Image: Layers of skin can be probed with terahertz rays in search of signs of skin cancer at its earliest stages of development (Photo courtesy of the [US] National Cancer Institute).
Image: Layers of skin can be probed with terahertz rays in search of signs of skin cancer at its earliest stages of development (Photo courtesy of the [US] National Cancer Institute).
New imaging technology has great potential to diagnose cancer at its earliest and most treatable stages.

Anis Rahman, PhD, president and chief technology officer of Applied Research & Photonics (Harrisburg, PA, USA), reported that malignant melanoma, the most lethal type of skin cancer, begins in pigment-producing cells located in the deepest part of the epidermis (the outer layer of the skin). Biochemical alterations are key characteristics of cancer occur in the melanocytes a long time before mole-like melanomas appear on the skin.

“Terahertz radiation is ideal for looking beneath the skin and detecting early signs of melanoma,” Dr. Rahman said. “T-rays are different from X-rays, which are ‘ionizing’ radiation that can cause damage. T-rays are a form of nonionizing radiation, like ordinary visible light, but they can be focused harmlessly below into the body and capture biochemical signatures of events like the start of cancer.”

T-rays occupy a position in the spectrum of electromagnetic radiation, which includes visible light and X-rays, between microwaves and infrared rays. One of the benefits of T-rays is that they penetrate only a few millimeters through skin, cloth, and other nonmetallic material.

Dr. Rahman’s research on T-rays was made through donated samples of human skin, suggesting that the technology could be valuable in diagnosing melanoma. In addition to developing T-rays for cancer diagnostics, Dr. Rahman’s team has effectively utilized them to measure the real-time absorption rates and penetration in the outer layer of skin of topically applied drugs—measurements that until now had not been possible.

Dr. Rahman presented his findings at a symposium held at the annual American Chemical Society (ACS) 2013 meeting, held September 11, 2013, in Indianapolis (IN, USA).

Related Links:
Applied Research & Photonics


Channels

Genomics/Proteomics

view channel
Image: The photo shows a mouse pancreatic islet as seen by light microscopy. Beta cells can be recognized by the green insulin staining. Glucagon is labeled in red and the nuclei in blue (Photo courtesy of Wikimedia Commons).

Regenerative Potential Is a Trait of Mature Tissues, Not an Innate Feature of Newly Born Cells

Diabetes researchers have found that the ability of insulin-producing beta cells to replicate and respond to elevated glucose concentrations is absent in very young animals and does not appear until after weaning.... Read more

Drug Discovery

view channel
Image: Wafers like the one shown here are used to create “organ-on-a-chip” devices to model human tissue (Photo courtesy of Dr. Anurag Mathur, University of California, Berkeley).

Human Heart-on-a-Chip Cultures May Replace Animal Models for Drug Development and Safety Screening

Human heart cells growing in an easily monitored silicon chip culture system may one day replace animal-based model systems for drug development and safety screening. Drug discovery and development... Read more

Biochemistry

view channel
Image:  Model depiction of a novel cellular mechanism by which regulation of cryptochromes Cry1 and Cry2 enables coordination of a protective transcriptional response to DNA damage caused by genotoxic stress (Photo courtesy of the journal eLife, March 2015, Papp SJ, Huber AL, et al.).

Two Proteins Critical for Circadian Cycles Protect Cells from Mutations

Scientists have discovered that two proteins critical for maintaining healthy day-night cycles also have an unexpected role in DNA repair and protecting cells against genetic mutations that could lead... Read more

Business

view channel

Roche Acquires Signature Diagnostics to Advance Translational Research

Roche (Basel, Switzerland) will advance translational research for next generation sequencing (NGS) diagnostics by leveraging the unique expertise of Signature Diagnostics AG (Potsdam, Germany) in biobanks and development of novel NGS diagnostic assays. Signature Diagnostics is a privately held translational oncology... Read more
 
Copyright © 2000-2015 Globetech Media. All rights reserved.