Features Partner Sites Information LinkXpress
Sign In
Demo Company

New Type 1 Diabetes Diagnostic Antigen Panel Now Available, Collaboration to Further Advance Panel

By BiotechDaily International staff writers
Posted on 17 Sep 2013
Print article
Image: The new multiplexed Type 1 Diabetes assay on Genalyte’s Maverick Detection System (Photo courtesy of Genalyte).
Image: The new multiplexed Type 1 Diabetes assay on Genalyte’s Maverick Detection System (Photo courtesy of Genalyte).
A new multiplexed, early diagnosis biomarker-panel assay that measures autoantigens associated with the development of Type 1 Diabetes is now available. A specially funded collaboration is also underway to further advance the assay.

The Maverick Type 1 Diabetes (T1D) Assay from Genalyte, Inc. (San Diego, CA, USA) is the first multiplexed assay that measures 7 autoantibodies associated with the destruction of pancreatic islet β cells seen in T1D. In addition, new preventative therapies may have the potential to reduce or stop this cell destruction in patients at risk—identifying these patients early would facilitate the development and use of these therapies.

The Maverick T1D Assay is a semiquantitative photonic ring immunoassay designed to simultaneously detect the antigens. The Maverick Detection System analyzes each antigen individually and reports results in less than 15 minutes, without the use of dyes, fluorescent probes, or radioactive labels. The assay requires only 2–5 μL serum or plasma sample and minimal hands-on time. It measures autoantibodies to insulin, proinsulin, glutamate decarboxylases GAD65 and GAD67, IA-2 (PTPRN, ICA512), phogrin (PTPRN2, IA-2ß) and ZnT8 (Zinc Transporter 8, SLC30A8).

The Maverick Detection System itself is based on Genalyte’s Microring Sensor Technology to reduce or eliminate sample preparation and provide scalable multiplexing for both proteins and nucleic acids. Its one-step workflow can rapidly deliver accurate results from small volume samples of many types. It has a large dynamic range and excellent sensitivity and reproducibility.

Genalyte is collaborating with the Barbara Davis Center for Childhood Diabetes (BDC; Aurora, CO, USA) at the University of Colorado School of Medicine to further develop and test panels for early detection of T1D. The current T1D panel was developed as part of the first phase of a Small Business Innovation Research grant awarded to Genalyte to develop multiplexed assays for early detection and monitoring of T1D. A USD 500,000 grant from the National Institute of Diabetes and Digestive and Kidney Diseases also supports expansion of the approach to allow autoantibody response profiling by multiple criteria to enhance the ability to detect and monitor disease development. “The pioneering work of Drs. George Eisenbarth and Liping Yu at BDC established assays for the measurement of islet autoantibodies. [...] The unique capabilities of our Maverick detection platform have the potential to provide researchers and clinicians with tools to detect and track this process from an early stage, when interventions to interrupt the disease process may be feasible,” said Martin Gleeson, PhD, Chief Scientific Officer of Genalyte.

“We are pleased to offer our innovative T1D antigen panel to diabetes researchers worldwide at the same time that we are working with Dr. Liping Yu and his lab at the Barbara Davis Diabetes Center to expand the utility of the approach,” added Dr. Gleeson.

Maverick assays are currently available for research use only. Genalyte also offers a Custom Spotting Service for various proteins supplied by customers.

Related Links:

Barbara Davis Center for Childhood Diabetes

Print article



view channel
Image: Left: Green actin fibers create architecture of the cell. Right: With cytochalasin D added, actin fibers disband and reform in the nuclei (Photo courtesy of the University of North Carolina).

Actin in the Nucleus Triggers a Process That Directs Stem Cells to Mature into Bone

A team of cell biologists has discovered why treatment of mesenchymal stem cells (MSCs) with the mycotoxin cytochalasin D directs them to mature into bone cells (osteoblasts) rather than into fat cells... Read more


view channel

Molecular Light Shed on “Dark” Cellular Receptors

Scientists have created a new research tool to help find homes for orphan cell-surface receptors, toward better understanding of cell signaling, developing new therapeutics, and determining causes of drug side-effects. The approach may be broadly useful for discovering interactions of orphan receptors with endogenous, naturally... Read more


view channel

Purchase of Biopharmaceutical Company Will Boost Development of Nitroxyl-Based Cardiovascular Disease Drugs

A major international biopharmaceutical company has announced the acquisition of a private biotech company that specializes in the development of drugs for treatment of cardiovascular disease. Bristol-Myers Squibb Co. (New York, NY, USA) has initiated the process to buy Cardioxyl Pharmaceuticals Inc. (Chapel Hill, NC, USA).... Read more
Copyright © 2000-2015 Globetech Media. All rights reserved.