Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH MEDIA
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC

New Type 1 Diabetes Diagnostic Antigen Panel Now Available, Collaboration to Further Advance Panel

By BiotechDaily International staff writers
Posted on 17 Sep 2013
Image: The new multiplexed Type 1 Diabetes assay on Genalyte’s Maverick Detection System (Photo courtesy of Genalyte).
Image: The new multiplexed Type 1 Diabetes assay on Genalyte’s Maverick Detection System (Photo courtesy of Genalyte).
A new multiplexed, early diagnosis biomarker-panel assay that measures autoantigens associated with the development of Type 1 Diabetes is now available. A specially funded collaboration is also underway to further advance the assay.

The Maverick Type 1 Diabetes (T1D) Assay from Genalyte, Inc. (San Diego, CA, USA) is the first multiplexed assay that measures 7 autoantibodies associated with the destruction of pancreatic islet β cells seen in T1D. In addition, new preventative therapies may have the potential to reduce or stop this cell destruction in patients at risk—identifying these patients early would facilitate the development and use of these therapies.

The Maverick T1D Assay is a semiquantitative photonic ring immunoassay designed to simultaneously detect the antigens. The Maverick Detection System analyzes each antigen individually and reports results in less than 15 minutes, without the use of dyes, fluorescent probes, or radioactive labels. The assay requires only 2–5 μL serum or plasma sample and minimal hands-on time. It measures autoantibodies to insulin, proinsulin, glutamate decarboxylases GAD65 and GAD67, IA-2 (PTPRN, ICA512), phogrin (PTPRN2, IA-2ß) and ZnT8 (Zinc Transporter 8, SLC30A8).

The Maverick Detection System itself is based on Genalyte’s Microring Sensor Technology to reduce or eliminate sample preparation and provide scalable multiplexing for both proteins and nucleic acids. Its one-step workflow can rapidly deliver accurate results from small volume samples of many types. It has a large dynamic range and excellent sensitivity and reproducibility.

Genalyte is collaborating with the Barbara Davis Center for Childhood Diabetes (BDC; Aurora, CO, USA) at the University of Colorado School of Medicine to further develop and test panels for early detection of T1D. The current T1D panel was developed as part of the first phase of a Small Business Innovation Research grant awarded to Genalyte to develop multiplexed assays for early detection and monitoring of T1D. A USD 500,000 grant from the National Institute of Diabetes and Digestive and Kidney Diseases also supports expansion of the approach to allow autoantibody response profiling by multiple criteria to enhance the ability to detect and monitor disease development. “The pioneering work of Drs. George Eisenbarth and Liping Yu at BDC established assays for the measurement of islet autoantibodies. [...] The unique capabilities of our Maverick detection platform have the potential to provide researchers and clinicians with tools to detect and track this process from an early stage, when interventions to interrupt the disease process may be feasible,” said Martin Gleeson, PhD, Chief Scientific Officer of Genalyte.

“We are pleased to offer our innovative T1D antigen panel to diabetes researchers worldwide at the same time that we are working with Dr. Liping Yu and his lab at the Barbara Davis Diabetes Center to expand the utility of the approach,” added Dr. Gleeson.

Maverick assays are currently available for research use only. Genalyte also offers a Custom Spotting Service for various proteins supplied by customers.

Related Links:

Genalyte
Barbara Davis Center for Childhood Diabetes



Channels

Genomics/Proteomics

view channel
Image: An Austrian Research Center of Industrial Biotechnology researcher is shown working with a laboratory scale continuous antibody purification reactor (Photo courtesy of the Austrian Research Center of Industrial Biotechnology).

Continuous Purification Technique Should Significantly Reduce Antibody Production Costs

An Austrian biotechnology firm has developed a method for the continuous purification of recombinant antibodies from cultures of clarified Chinese hamster ovary (CHO) cells that promises to significantly... Read more

Drug Discovery

view channel
Image: Wafers like the one shown here are used to create “organ-on-a-chip” devices to model human tissue (Photo courtesy of Dr. Anurag Mathur, University of California, Berkeley).

Human Heart-on-a-Chip Cultures May Replace Animal Models for Drug Development and Safety Screening

Human heart cells growing in an easily monitored silicon chip culture system may one day replace animal-based model systems for drug development and safety screening. Drug discovery and development... Read more

Biochemistry

view channel
Image:  Model depiction of a novel cellular mechanism by which regulation of cryptochromes Cry1 and Cry2 enables coordination of a protective transcriptional response to DNA damage caused by genotoxic stress (Photo courtesy of the journal eLife, March 2015, Papp SJ, Huber AL, et al.).

Two Proteins Critical for Circadian Cycles Protect Cells from Mutations

Scientists have discovered that two proteins critical for maintaining healthy day-night cycles also have an unexpected role in DNA repair and protecting cells against genetic mutations that could lead... Read more

Business

view channel

“Softer” Mass Spec Techniques Gain Advantage in Biomarker Discovery

Two mass spectrometry (MS) technologies, MALDI and DESI, are increasing in applications as their effectiveness is established, according to Kalorama Information (New York, NY, USA) in its report “Proteomics Markets for Research and IVD Applications (Mass Spectrometry, Chromatography, Microarrays, Electrophoresis, Immunoassays,... Read more
 
Copyright © 2000-2015 Globetech Media. All rights reserved.