Features | Partner Sites | Information | LinkXpress
Sign In
JIB
GLOBETECH PUBLISHING
GLOBETECH PUBLISHING

New Software Tool Identifies Driver Genes and Pathways in Cancer Sequencing Studies

By BiotechDaily International staff writers
Posted on 03 Sep 2013
Cancer researchers have developed a software tool that enables them to identify the driver mutations that underlie the transformation of normal cells and tissues into malignancies.

Cancers are caused by the accumulation of genomic alterations. Driver mutations are required for the expression of a cancer phenotype, whereas passenger mutations are irrelevant to tumor development and accumulate through DNA replication. A major challenge facing the field of cancer genome sequencing has been identifying cancer-associated driver gene mutations.

Investigators at the Medical College of Wisconsin (Milwaukee, USA) have described a powerful and flexible statistical framework for identifying driver genes and driver signaling pathways in cancer genome-sequencing studies. Biological knowledge of the mutational process in tumors was fully integrated into their statistical models, which included such variables as the length of protein-coding regions, transcript isoforms, variation in mutation types, differences in background mutation rates, the redundancy of genetic code, and multiple mutations in one gene.

A detailed description of the software tool, which was nicknamed DrGaP—for Driver Genes and Pathways—was published in the August 15, 2013, online edition of the American Journal of Human Genetics.

"DrGaP is immediately applicable to cancer genome sequencing studies and will lead a more complete identification of altered driver genes and driver signaling pathways in cancer," said senior author Dr. Pengyuan Liu, associate professor of physiology at the Medical College of Wisconsin. "Biological knowledge of the mutation process is fully integrated into the models, and provides several significant improvements and increased power over current methods."

Related Links:
Medical College of Wisconsin



comments powered by Disqus

Channels

Genomics/Proteomics

view channel
Image: A leukemia cell coated with antibody is marked for destruction by activated natural killer cells (Photo courtesy of the University of Southern California).

Leukemia Cells Are Killed in Culture by Immune Cells Grown from the Same Patient

Immune system natural killer (NK) cells were isolated from leukemia patients, expanded in culture, and then shown in an in vitro system to attack and destroy cancer cells from the original cell donors.... Read more

Drug Discovery

view channel
Image: (Left) Neurons in brains from people with autism do not undergo normal pruning during childhood and adolescence. The images show representative neurons from unaffected brains (left) and brains from autistic patients (right); the spines on the neurons indicate the location of synapses (Photo courtesy of Guomei Tang, PhD and Mark S. Sonders, PhD, Columbia University Medical Center).

Autistic Youngsters Found to Have Too Many Brain Synapses

Autistic children and adolescents have been shown to have an excess of brain synapses, and this is due to a slowdown in the normal brain “trimming” process during development, according to new findings.... Read more

Therapeutics

view channel
Image: Liver cells regenerated in mice treated with a new drug (right) compared with a control group (center) after partial liver removal. Healthy liver cells are shown at left (Photo courtesy of Marshall et al, 2014, the Journal of Experimental Medicine).

New Drug Triggers Liver Regeneration After Surgery

Investigators have revealed that an innovative complement inhibitor decreases complement-mediated liver cell death, and actually stimulates postsurgery liver regrowth in mice. Liver cancer often results... Read more

Business

view channel

Partnership Established to Decode Bowel Disease

23andMe (Mountain View, CA,USA), a personal genetics company, is collaborating with Pfizer, Inc. (New York, NY, USA), in which the companies will seek to enroll 10,000 people with inflammatory bowel disease (IBD) in a research project designed to explore the genetic factors associated with the onset, progression, severity,... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.