Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH MEDIA
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC

New Software Tool Identifies Driver Genes and Pathways in Cancer Sequencing Studies

By BiotechDaily International staff writers
Posted on 03 Sep 2013
Cancer researchers have developed a software tool that enables them to identify the driver mutations that underlie the transformation of normal cells and tissues into malignancies.

Cancers are caused by the accumulation of genomic alterations. Driver mutations are required for the expression of a cancer phenotype, whereas passenger mutations are irrelevant to tumor development and accumulate through DNA replication. A major challenge facing the field of cancer genome sequencing has been identifying cancer-associated driver gene mutations.

Investigators at the Medical College of Wisconsin (Milwaukee, USA) have described a powerful and flexible statistical framework for identifying driver genes and driver signaling pathways in cancer genome-sequencing studies. Biological knowledge of the mutational process in tumors was fully integrated into their statistical models, which included such variables as the length of protein-coding regions, transcript isoforms, variation in mutation types, differences in background mutation rates, the redundancy of genetic code, and multiple mutations in one gene.

A detailed description of the software tool, which was nicknamed DrGaP—for Driver Genes and Pathways—was published in the August 15, 2013, online edition of the American Journal of Human Genetics.

"DrGaP is immediately applicable to cancer genome sequencing studies and will lead a more complete identification of altered driver genes and driver signaling pathways in cancer," said senior author Dr. Pengyuan Liu, associate professor of physiology at the Medical College of Wisconsin. "Biological knowledge of the mutation process is fully integrated into the models, and provides several significant improvements and increased power over current methods."

Related Links:
Medical College of Wisconsin



Channels

Genomics/Proteomics

view channel
Image: In mice, mitochondria (green) in healthy (left) and Mfn1-deficient heart muscle cells (center) are organized in a linear arrangement, but the organelles are enlarged and disorganized in Mfn2-deficient cells (right) (Photo courtesy of the Rockefeller Press).

Cell Biologists Find That Certain Mitochondrial Diseases Stem from Coenzyme Q10 Depletion

A team of German cell biologists has linked the development of certain mitochondrial-linked diseases to depletion of the organelles' pool of coenzyme Q10 brought about by mutation in the MFN2 gene, which... Read more

Drug Discovery

view channel
Image: Molecular model of the protein Saposin C (Photo courtesy of Wikimedia Commons).

Nanovesicles Kill Human Lung Cancer Cells in Culture and in a Mouse Xenograft Model

Nanovesicles assembled from the protein Saposin C (SapC) and the phospholipid dioleoylphosphatidylserine (DOPS) were shown to be potent inhibitors of lung cancer cells in culture and in a mouse xenograft model.... Read more

Biochemistry

view channel

Possible New Target Found for Treating Brain Inflammation

Scientists have identified an enzyme that produces a class of inflammatory lipid molecules in the brain. Abnormally high levels of these molecules appear to cause a rare inherited eurodegenerative disorder, and that disorder now may be treatable if researchers can develop suitable drug candidates that suppress this enzyme.... Read more

Business

view channel

Roche Acquires Signature Diagnostics to Advance Translational Research

Roche (Basel, Switzerland) will advance translational research for next generation sequencing (NGS) diagnostics by leveraging the unique expertise of Signature Diagnostics AG (Potsdam, Germany) in biobanks and development of novel NGS diagnostic assays. Signature Diagnostics is a privately held translational oncology... Read more
 
Copyright © 2000-2015 Globetech Media. All rights reserved.