Features Partner Sites Information LinkXpress
Sign In
Demo Company

Visualizing How Cancer Chromosome Abnormalities Form in Living Cells

By BiotechDaily International staff writers
Posted on 20 Aug 2013
Print article
Image: In new research, scientists have directly observed events that lead to formation of a chromosome abnormality that is often found in cancer cells (Photo courtesy of National Cancer Institute [NCI] at NIH).
Image: In new research, scientists have directly observed events that lead to formation of a chromosome abnormality that is often found in cancer cells (Photo courtesy of National Cancer Institute [NCI] at NIH).
Scientists have for the first time directly observed events that lead to the formation of a chromosome abnormality that is frequently found in cancer cells. The abnormality, called a translocation, occurs when part of a chromosome breaks off and then binds to another chromosome.

The study’s findings, conducted by scientists at the U.S. National Cancer Institute (NCI; Bethesda, MD, USA), part of the National Institutes of Health, were published August 9, 2013, in the journal Science. 

Chromosome translocations have been found in almost all cancer cells, and it has long been known that translocations can play a role in cancer development. However, spite of intensive of research, just precisely how translocations form in a cell has remained elusive. To better determine this process, the researchers created a research system in which they induced, in a controlled way, breaks in the DNA of different chromosomes in living cells. Using cutting-edge imaging technology, they were then able to see when the broken ends of the chromosomes were reattached correctly or incorrectly inside the cells.

Translocations are very rare occurrences, and the investigators’ ability to visualize these events in real time was made possible bya recently developed technology that is being used at the NCI that enables investigators to visualize alterations in thousands of cells over a long time. “Our ability to see this fundamental process in cancer formation was possible only because of access to revolutionary imaging technology,” said the study’s senior author, Tom Misteli, PhD, Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, NCI.

The scientists involved with this study were able to demonstrate that translocations can occur within hours of DNA breaks and that their formation is independent of when the breaks happen during the cell division cycle. Cells have intrinsic mending mechanisms that can fix most DNA breaks, but translocations at times still occur.

To additionally examine the role of DNA repair in translocation formation, the researchers curbed vital pieces of the DNA damage response processes within cells and monitored the effects on the repair of DNA breaks and translocation formation. They discovered that suppression of one element of DNA damage response processes, a protein called DNAPK-kinase, increased the occurrence of translocations almost 10-fold. The scientists also determined that translocations formed preferentially between prepositioned genes.

“These observations have allowed us to formulate a time and space framework for elucidating the mechanisms involved in the formation of chromosome translocations,” said Vassilis Roukos, PhD, NCI, and lead scientist of the study. “We can now finally begin to really probe how these fundamental features of cancer cells form.”

Related Links:
US National Cancer Institute

Print article



view channel
Image: Glioblastoma multiforme (GBM) (Photo courtesy of the University of California, San Diego School of Medicine).

How Blocking TROY Signaling Slows Brain Cancer Growth

Cancer researchers have found how the low molecular weight drug propentofylline (PPF) slows the growth of the aggressive brain tumor glioblastoma multiforme (GBM). This form of brain cancer is the most... Read more


view channel
Image: A partially completed three-dimensional printed airway from nostril to trachea with fine structure of the nasal cavity showing (Photo courtesy of Dr. Rui Ni, Pennsylvania State University).

The Structure of the Nasal Cavity Channels Food Smells into the Nose and Avoids the Lungs

Three-dimensional printing technology was used to create a model of the nasal cavity that enabled researchers to demonstrate why the smell of food goes into the nose rather than down into the lungs.... Read more


view channel

Molecular Light Shed on “Dark” Cellular Receptors

Scientists have created a new research tool to help find homes for orphan cell-surface receptors, toward better understanding of cell signaling, developing new therapeutics, and determining causes of drug side-effects. The approach may be broadly useful for discovering interactions of orphan receptors with endogenous, naturally... Read more


view channel

Purchase of Biopharmaceutical Company Will Boost Development of Nitroxyl-Based Cardiovascular Disease Drugs

A major international biopharmaceutical company has announced the acquisition of a private biotech company that specializes in the development of drugs for treatment of cardiovascular disease. Bristol-Myers Squibb Co. (New York, NY, USA) has initiated the process to buy Cardioxyl Pharmaceuticals Inc. (Chapel Hill, NC, USA).... Read more
Copyright © 2000-2015 Globetech Media. All rights reserved.