Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING
GLOBETECH PUBLISHING
JIB

Different Bacteria Cultures Maintained in Microfluidic System

By BiotechDaily International staff writers
Posted on 13 Aug 2013
Image: Microfluidic system for multiple bacterial cultures (Photo courtesy of Polish Institute of Physical Chemistry).
Image: Microfluidic system for multiple bacterial cultures (Photo courtesy of Polish Institute of Physical Chemistry).
A fabricated microfluidic device allows hundreds of different bacteria cultures to be maintained simultaneously.

The system allows for the merging, transporting and splitting of microdroplets where strictly controlled chemical reactions and the cultivation of bacterial colonies can be performed.

A group of scientists at the Institute of Physical Chemistry (Warsaw, Poland) engineered the microfluidic systems from polymer plates that correspond to the size of a credit card. Inside the system, a carrier fluid, mostly oil, carries microdroplets containing chemicals, flows laminarly through tiny channels of diameters in the range of tenths or hundredths of a millimeter. In this single microfluidic system thousands of different chemical reactions can be carried out during a day.

The microsystem is composed of two branches of microchannels forming densely arranged zigzags. A few hundred droplets can circulate in the microchannels, at a distance of about one centimeter from each other. The microdroplets move in a pendular movement from one branch to the other. Each droplet circulating within the microfluidic system has its own unique identifier, assigned by the optoelectronic system. It allows the scientist to monitor at any time what operations have been carried out on each microdroplet. A single droplet can include over 100,000 bacteria that are unable to move between the droplets, as the bacteria cannot cross the surface membrane of a microdroplet, and the carrier liquid used to transport microdroplets is not an environment favorable for the life of bacteria.

Piotr Garstecki, PhD, DSc, the lead author, said, “We can transform each microdroplet into a real bioreactor. Therefore, in a single small plate we can have up to several hundreds of bioreactors, with different, controlled concentration of an antibiotic, a different antibiotic or even different bacterial species in each bioreactor.” The paper was published on July 15, 2013, in the journal Angewandte Chemie International Edition.

Related Links:

Polish Institute of Physical Chemistry



comments powered by Disqus

Channels

Drug Discovery

view channel
Image: The European Commission has approved the use of Avastin combined with chemotherapy as a treatment for women with recurrent ovarian cancer (Photo courtesy of Genentech).

Drug for Treatment of Platinum Resistant Recurrent Ovarian Cancer Approved for Use in Europe

For the first time in more than 15 years the European Commission (EC) has approved a new therapeutic option for the most difficult to treat form of ovarian cancer. Ovarian cancer causes more deaths... Read more

Therapeutics

view channel
Image: This type of electronic pacemaker could become obsolete if induction of biological pacemaker cells by gene therapy proves successful (Photo courtesy of Wikimedia Commons).

Gene Therapy Induces Functional Pacemaker Cells in Pig Heart Failure Model

Cardiovascular disease researchers working with a porcine heart failure model have demonstrated the practicality of using gene therapy to replace implanted electronic pacemakers to regulate heartbeat.... Read more

Lab Technologies

view channel
Image: The DrySyn MULTI converts any standard hotplate stirrer into a high performance reaction block (Photo courtesy of Asynt).

New Reaction Vessel Heating System Is Cleaner and Safer

Biotech and other life science researchers can create a safer, cleaner, and more efficient working environment in their laboratories by switching from oil bath-based heating of reaction vessels to a new... Read more

Business

view channel

Global Computational Biology Sector Expected to Reach over USD 4 Billion by 2020

The global market for computational biology is expected to reach USD 4.285 billion by 2020 growing at a compound annual growth rate (CAGR) of 21.1%, according to new market research. Steady surge in the usage and application of computational biology for bioinformatics R&D programs designed for sequencing genomes... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.