Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC
GLOBETECH MEDIA

Prototype Microspectrometer Suitable for Lab-on-a-Chip Technologies

By BiotechDaily International staff writers
Posted on 12 Aug 2013
Image: Yale University researchers have developed an ultracompact, low-cost spectrometer with improved resolution over existing micro models. The innovation represents an advance in “lab-on-a-chip” technology, or the consolidation of laboratory capabilities in miniature, highly portable devices (Photo courtesy of Yale University).
Image: Yale University researchers have developed an ultracompact, low-cost spectrometer with improved resolution over existing micro models. The innovation represents an advance in “lab-on-a-chip” technology, or the consolidation of laboratory capabilities in miniature, highly portable devices (Photo courtesy of Yale University).
By passing a beam of light through a silicon chip pierced with randomly scattered holes investigators have developed a sensitive microspectrometer that may be adaptable for "lab-on-a-chip" applications.

Investigators at Yale University (New Haven, CT, USA) reported in the July 28, 3013, online edition of the journal Nature Photonics that they had built a spectrometer based on multiple light scattering in a silicon-on-insulator chip featuring a random structure. A probe signal diffused through the chip generating wavelength-dependent speckle patterns, which were detected and used to recover the input spectrum after calibration. A spectral resolution of 0.75 nanometers at a wavelength of 1,500 nanometers in a 25-micrometer-radius structure was achieved.

“The largest dimension of our spectrometer, which we built on a silicon chip, is about the width of a human hair,” said first author Dr. Brandon Redding, a postdoctoral associate in applied physics at Yale University. “It could open up a whole new range of uses, a lot of them outside the lab.”

The microspectrometer can detect a change in wavelength of less than one nanometer, roughly matching the capability of macroscopic spectrometers about the size of a hard drive. “We were taking a very different approach,” said Dr. Redding. “The idea of using disorder and multiple scattering is a fairly unexplored concept. Normally, disorder is something you want to overcome or avoid. In this case, it is what lets us make the device so small. We get a much longer path length for our light relative to the size of the device, because the light bounces around many times.”

The authors maintain that a compact, high-resolution spectrometer, such as that described in this study, is well suited for lab-on-a-chip spectroscopy applications.

Related Links:

Yale University




WATERS CORPORATION

Channels

Drug Discovery

view channel
Image: Molecular model of the anti-cancer drug 5-fluorouracil (Photo courtesy of Wikimedia Commons).

Novel Microcapsule Approach Reduces Toxic Side Effects of Chemotherapy

Cancer researchers have reduced chemotherapy's toxic side effects by using nanoporous capsules to transport an enzyme to the site of a tumor where it is activated by a selective heating process to convert... Read more

Business

view channel

NanoString and MD Anderson Collaborate on Development of Novel Multi-Omic Expression Profiling Assays for Cancer

The University of Texas MD Anderson Cancer Center (Houston, TX, USA) and NanoString Technologies, Inc. (Seattle, WA, USA) will partner on development of a revolutionary new type of assay—simultaneously profiling gene and protein expression, initially aiming to discover and validate biomarker signatures for immuno-oncology... Read more
 

Events

27 May 2015 - 28 May 2015
02 Jun 2015 - 03 Jun 2015
15 Jun 2015 - 18 Jun 2015
Copyright © 2000-2015 Globetech Media. All rights reserved.