Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC
PURITAN MEDICAL

Prototype Microspectrometer Suitable for Lab-on-a-Chip Technologies

By BiotechDaily International staff writers
Posted on 12 Aug 2013
Image: Yale University researchers have developed an ultracompact, low-cost spectrometer with improved resolution over existing micro models. The innovation represents an advance in “lab-on-a-chip” technology, or the consolidation of laboratory capabilities in miniature, highly portable devices (Photo courtesy of Yale University).
Image: Yale University researchers have developed an ultracompact, low-cost spectrometer with improved resolution over existing micro models. The innovation represents an advance in “lab-on-a-chip” technology, or the consolidation of laboratory capabilities in miniature, highly portable devices (Photo courtesy of Yale University).
By passing a beam of light through a silicon chip pierced with randomly scattered holes investigators have developed a sensitive microspectrometer that may be adaptable for "lab-on-a-chip" applications.

Investigators at Yale University (New Haven, CT, USA) reported in the July 28, 3013, online edition of the journal Nature Photonics that they had built a spectrometer based on multiple light scattering in a silicon-on-insulator chip featuring a random structure. A probe signal diffused through the chip generating wavelength-dependent speckle patterns, which were detected and used to recover the input spectrum after calibration. A spectral resolution of 0.75 nanometers at a wavelength of 1,500 nanometers in a 25-micrometer-radius structure was achieved.

“The largest dimension of our spectrometer, which we built on a silicon chip, is about the width of a human hair,” said first author Dr. Brandon Redding, a postdoctoral associate in applied physics at Yale University. “It could open up a whole new range of uses, a lot of them outside the lab.”

The microspectrometer can detect a change in wavelength of less than one nanometer, roughly matching the capability of macroscopic spectrometers about the size of a hard drive. “We were taking a very different approach,” said Dr. Redding. “The idea of using disorder and multiple scattering is a fairly unexplored concept. Normally, disorder is something you want to overcome or avoid. In this case, it is what lets us make the device so small. We get a much longer path length for our light relative to the size of the device, because the light bounces around many times.”

The authors maintain that a compact, high-resolution spectrometer, such as that described in this study, is well suited for lab-on-a-chip spectroscopy applications.

Related Links:

Yale University




Channels

Genomics/Proteomics

view channel
Image: The photomicrograph shows the head of a mouse embryo in which the pericytes are visible as blue dots along the blood vessel (Photo courtesy of the University of Gothenburg).

Genetically Engineered Mouse Model Reveals Key to Formation of the Blood-Brain Barrier

Use of a mouse model that had been genetically engineered to lack the gene that encodes the forkhead transcription factor Foxf2 has helped to explain how pericytes, cells that line the capillaries, form... Read more

Drug Discovery

view channel
Image: Scanning electron microscope (SEM) image of a field of polypyrrole nanowires (Photo courtesy of Dr. Richard Borgens, Purdue University).

Novel Controlled-Release Drug Delivery System Heals Spinal Inflammation in Mouse Model

A novel drug delivery system that allows controllable release of an anti-inflammatory agent directly to the site of inflammation or injury was tested successfully in a mouse model. Investigators at... Read more

Business

view channel

Biopharm Startup to Commercialize Antibody Therapy for Drug Resistant Cancers

A biopharm startup company has licensed the rights to commercialize an antibody-based approach for treatment of drug resistant cancers. The new company, CadheRx Therapeutics (La Jolla, CA, USA), entered into a licensing agreement with Stony Brook University (NY, USA) to develop and market an anticancer technology derived... Read more
 
Copyright © 2000-2015 Globetech Media. All rights reserved.