Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH MEDIA
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC

Prototype Microspectrometer Suitable for Lab-on-a-Chip Technologies

By BiotechDaily International staff writers
Posted on 12 Aug 2013
Image: Yale University researchers have developed an ultracompact, low-cost spectrometer with improved resolution over existing micro models. The innovation represents an advance in “lab-on-a-chip” technology, or the consolidation of laboratory capabilities in miniature, highly portable devices (Photo courtesy of Yale University).
Image: Yale University researchers have developed an ultracompact, low-cost spectrometer with improved resolution over existing micro models. The innovation represents an advance in “lab-on-a-chip” technology, or the consolidation of laboratory capabilities in miniature, highly portable devices (Photo courtesy of Yale University).
By passing a beam of light through a silicon chip pierced with randomly scattered holes investigators have developed a sensitive microspectrometer that may be adaptable for "lab-on-a-chip" applications.

Investigators at Yale University (New Haven, CT, USA) reported in the July 28, 3013, online edition of the journal Nature Photonics that they had built a spectrometer based on multiple light scattering in a silicon-on-insulator chip featuring a random structure. A probe signal diffused through the chip generating wavelength-dependent speckle patterns, which were detected and used to recover the input spectrum after calibration. A spectral resolution of 0.75 nanometers at a wavelength of 1,500 nanometers in a 25-micrometer-radius structure was achieved.

“The largest dimension of our spectrometer, which we built on a silicon chip, is about the width of a human hair,” said first author Dr. Brandon Redding, a postdoctoral associate in applied physics at Yale University. “It could open up a whole new range of uses, a lot of them outside the lab.”

The microspectrometer can detect a change in wavelength of less than one nanometer, roughly matching the capability of macroscopic spectrometers about the size of a hard drive. “We were taking a very different approach,” said Dr. Redding. “The idea of using disorder and multiple scattering is a fairly unexplored concept. Normally, disorder is something you want to overcome or avoid. In this case, it is what lets us make the device so small. We get a much longer path length for our light relative to the size of the device, because the light bounces around many times.”

The authors maintain that a compact, high-resolution spectrometer, such as that described in this study, is well suited for lab-on-a-chip spectroscopy applications.

Related Links:

Yale University




Channels

Genomics/Proteomics

view channel
Image: The bone marrow of mice with normal ether lipid production (top) contains more white blood cells than are found in the bone marrow of mice with ether lipid deficiency (bottom) (Photo courtesy of Washington University School of Medicine).

Inactivating Fatty Acid Synthase Reduces Inflammation by Interfering with Neutrophil Membrane Function

The enzyme fatty acid synthase (FAS) was shown to regulate inflammation by sustaining neutrophil viability through modulation of membrane phospholipid composition. Neutrophils are the most abundant... Read more

Drug Discovery

view channel
Image: Researchers have attached two drugs—TRAIL and Dox—onto graphene strips. TRAIL is most effective when delivered to the external membrane of a cancer cell, while Dox is most effective when delivered to the nucleus, so the researchers designed the system to deliver the drugs sequentially, with each drug hitting a cancer cell where it will do the most damage (Photo courtesy of Dr. Zhen Gu, North Carolina State University).

Anticancer Drug Delivery System Utilizes Graphene Strip Transporters

The ongoing search by cancer researchers for targeted drug delivery systems has generated a novel approach that uses graphene strips to transport simultaneously the anticancer agents TRAIL (tumor necrosis... Read more

Biochemistry

view channel

Blocking Enzyme Switch Turns Off Tumor Growth in T-Cell Acute Lymphoblastic Leukemia

Researchers recently reported that blocking the action of an enzyme “switch” needed to activate tumor growth is emerging as a practical strategy for treating T-cell acute lymphoblastic leukemia. An estimated 25% of the 500 US adolescents and young adults diagnosed yearly with this aggressive disease fail to respond to... Read more

Therapeutics

view channel
Image: Cancer cells infected with tumor-targeted oncolytic virus (red). Green indicates alpha-tubulin, a cell skeleton protein. Blue is DNA in the cancer cell nuclei (Photo courtesy of Dr. Rathi Gangeswaran, Bart’s Cancer Institute).

Innovative “Viro-Immunotherapy” Designed to Kill Breast Cancer Cells

A leading scientist has devised a new treatment that employs viruses to kill breast cancer cells. The research could lead to a promising “viro-immunotherapy” for patients with triple-negative breast cancer,... Read more

Business

view channel

Biotech Acquisition Designed to Accelerate the Development and Marketing of Immunosequencing Applications

Adaptive Biotechnologies Corp. (Seattle, WA, USA), a developer of next-generation sequencing (NGS) to profile T-cell and B-cell receptors, has acquired of Sequenta, Inc. (South San Francisco, CA, USA), which is expected to expedite and expand the use of innovative immunosequencing technology for researchers and clinicians... Read more
 
Copyright © 2000-2015 Globetech Media. All rights reserved.