Features | Partner Sites | Information | LinkXpress
Sign In
Demo Company

Smart Nanofiber Therapy Effective in Fighting Cancer

By BiotechDaily International staff writers
Posted on 23 Jul 2013
Japanese scientists reported that integrating magnetic nanoparticles with an anticancer agent into crosslinked polymer nanofibers offers a twofold treatment for cancer therapy with lessened side effects.

Stimuli-responsive or “smart” polymeric nanofibers have spurred increasing interest. The nanoscale structures give rise to high sensitivity to stimuli while they can also be manipulated easily as macroscopic materials. Researchers from the Materials and Science Engineering Graduate School of Pure and Applied Science of the University of Tsukuba (Tsukuba, Japan) and the National Institute of Materials Science (NIMS; Tsukuba, Ibaraki, Japan) now have revealed how they can be used to utilize magnetic nanoparticles to enhance hyperthermal effects for treating cancer while avoiding the typical side-effects. The incorporation of doxorubicin in the nanofibers as well allows controlled release of the anticancer drug as a further mechanism for killing cancer cells.

Magnetic nanoparticles can kill cancer cells through the heat generated by induction when subjected to an alternating magnetic field. Such hyperthermal treatments have also been shown to improve the effectiveness of anticancer drugs. However, the nanoparticles can also lead to impaired mitochondrial function, inflammation, and DNA damage. Incorporating the nanoparticles into nanofibers may provide a better approach.

Drs. Young-Jin Kim, Mitsuhiro Ebara, and Takao Aoyagi electro-spun the fibers from a solution of the polymer poly(NIPAAm-co-HMAAm) mixed with a solution of magnetic nanoparticles and doxorubicin. The heating caused by the nanoparticles when switching on an alternating magnetic field caused hyperthermal effects, as well as reversible decreased swelling and deformation of the fibers, which released the drug molecules. In vitro and cell line research was shown to effectively destroy the cancer cells, which was greatly reduced for hyperthermal treatments alone in the absence of doxorubicin.

“The doxorubicin/magnetic-nanoparticles nanofiber induced the apoptosis of cancer cells due to a synergistic effect of chemotherapy and hyperthermia,” reported the authors, who published their findings online June 14, 2013, in the journal Advanced Functional Materials. The study demonstrates how smart nanofibers have potential for use as a manipulative material that combines hyperthermia and drug release treatments that can be controlled with the simple switching on or off of an alternating magnetic field.

Related Links:

University of Tsukuba
National Institute of Materials Science



view channel
Image: Micrograph showing immunofluorescence of skin differentiation markers for basal keratinocytes (Photo courtesy of Dr. Russ Carstens, University of Pennsylvania).

Alternate Splicing Proteins Critically Linked to Skin and Organ Development

Two proteins that regulate alternative splicing in epithelial cells have been linked to the proper development of the skin and protective layers that surround other organs in the body. Two steps are... Read more

Drug Discovery

view channel
Image: Endoscopic image of a bowel section known as the sigmoid colon afflicted with ulcerative colitis. The internal surface of the colon is blotchy and broken in places (Photo courtesy of Wikimedia Commons).

Orally Delivered Curcumin-Loaded Microparticles Effectively Treat Mouse Model of Ulcerative Colitis

Microparticles (MPs) loaded with the efficient anti-inflammatory agent curcumin were found to effectively treat a mouse model of ulcerative colitis. Ulcerative colitis is a chronic relapsing disease... Read more


view channel

Collaboration Agreement to Boost Discovery of Fully Human Antibodies for Therapeutic Use

The discovery of fully human antibodies for therapeutic use will be boosted by a recently announced collaboration between a major university research center and a dynamic biopharmaceutical development company. Regeneron Pharmaceuticals, Inc. (Tarrytown, New York, USA) and The Experimental Therapeutics Institute (ETI)... Read more


17 Oct 2015 - 21 Oct 2015
25 Oct 2015 - 29 Oct 2015
16 Nov 2015 - 19 Nov 2015
Copyright © 2000-2015 Globetech Media. All rights reserved.