Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Autoimmune Diseases Research Model Developed to Clarify Antibody Mechanisms

By BiotechDaily International staff writers
Posted on 21 Jul 2013
Print article
Canadian scientists have devised a unique research model for the study of autoimmune diseases. The Montréal scientists are the first to find an approach to better understand two significant processes that enhance the quality of antibodies.

This study, conducted by researchers from the l'Institut de Recherches Cliniques de Montréal (IRCM; QB, Canada), led by Dr. Javier M. Di Noia in the immunity and viral infections research division, was published in the June 15, 2013, issue of the Journal of Immunology.

Dr. Di Noia’s team is evaluating B cells, a group of white blood cells known as lymphocytes whose major task is to make antibodies to fight against antigens. “Our project focused on two mechanisms that produce this wide variety of antibodies,” said Dr. Di Noia, director of the mechanisms of genetic diversity research unit at the IRCM. “Because both processes are initiated by the same enzyme known as AID [activation-induced deaminase], it had previously been very difficult to study them separately. We were able to identify, for the first time, a mouse model in which the mechanisms could be analyzed independently during an acute immune response.”

The two processes being studied are known as class switching and affinity maturation. Class switching is the mechanism that allows a B cell to generate diverse classes of antibodies, so that a single antibody can be used by several different parts of the immune system. Affinity maturation, on the other hand, is the process by which B cells produce antibodies with increasingly stronger bonds to antigens during an immune response.

“Since eliminating AID would in turn completely eliminate affinity maturation and class switching, we focused on an enzyme called UNG, which is also involved in both processes,” added Astrid Zahn, research associate in Dr. Di Noia’s laboratory and first author of the study. “When we analyzed mice lacking the UNG [uracil-DNA glycosylase] gene, we found that affinity maturation was normal but class switching was strongly reduced during acute immune responses, such as the response to immunization and against a viral infection.”

“While over 100 AID-deficient patients have been identified, it is striking that only a handful of patients are known to be UNG-deficient,” explained Dr. Zahn. “Our study, which shows that chronic antibody responses [those to environmental antigens] remain nearly normal without UNG, can explain why most UNG-deficient individuals are not detected among immunodeficient patients. Nevertheless, because we also found that acute antibody responses were significantly affected, we suspect that UNG-deficient people will, for example, respond very poorly to vaccination. In addition, as this work was conducted as part of a larger ongoing investigation of the complex relationship between AID and UNG, we believe that UNG might possibly act as a tumor-suppressor in B-cell lymphomas.”

“Until now, it was difficult to study the relative importance of class switching and affinity maturation, and the impact of these two mechanisms on immune responses,” concluded Dr. Di Noia. “Our study provides a novel model to study the contribution of these mechanisms in certain autoimmune diseases such as lupus and rheumatoid arthritis, or some infections like influenza.”

Related Links:

l'Institut de Recherches Cliniques de Montréal



Print article

Channels

Genomics/Proteomics

view channel
Image: Top: Overview of the structure of T-STAR STAR domain in complex with AUUAAA RNA. Bottom left: close up view of the specific recognition of the RNA. Bottom right: close up view of the KH dimerization interface (Photo courtesy of the University of Leicester).

Atomic Structures of Alternative Splicing Regulator Proteins May Lead to New Anticancer Drugs

A detailed structural analysis of two RNA-binding proteins that regulate alternate splicing of gene expression, which can lead to various types of cancer, is expected to aid in the development of drugs... Read more

Drug Discovery

view channel
Image: Naturally occurring clay from Kisameet Bay, Canada, exhibits potent antibacterial activity against multidrug-resistant pathogens (Photo courtesy of Kisameet Glacial Clay Inc.).

Antibiotic Resistant Bacteria Succumb to Treatment with Unique Natural Clay

A team of Canadian medical microbiologists has demonstrated the potential use of a unique type of natural clay for treating pathogenic bacteria that have become resistant to the commonly used antibiotics.... Read more

Business

view channel

Purchase Agreement to Boost Ebola Vaccine Development

A deal to help boost development of a vaccine to protect against Ebolavirus infection was finalized at the recent Davos Conference in Switzerland. Gavi (Geneva, Switzerland), the global alliance for vaccines and immunizations, announced that it would spend five million USD to purchase the Ebola vaccine under development... Read more
Copyright © 2000-2016 Globetech Media. All rights reserved.