Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING LLC
PZ HTL SA
GLOBETECH PUBLISHING LLC

Genetically Engineered Mouse Models That Closely Resemble Human Patients Enable More Relevant Cancer Drug Studies

By BiotechDaily International staff writers
Posted on 18 Jul 2013
Image: Ultrasound imaging of mouse tumor showing response to chemotherapy. The mouse model allowed researchers to derive a new biomarker of chemotherapy responsiveness (Photo courtesy of Perou Laboratory at the University of North Carolina).
Image: Ultrasound imaging of mouse tumor showing response to chemotherapy. The mouse model allowed researchers to derive a new biomarker of chemotherapy responsiveness (Photo courtesy of Perou Laboratory at the University of North Carolina).
The use of genetically engineered mouse models (GEMMs) as recipients for xenografts of various types of human tumors enables study of tumor growth in an animal system with intact immune system and identification of genetic signatures that can be used to predict the responsiveness of these tumors to drug treatment.

Investigators at the University of North Carolina (Chapel Hill, USA) reasoned that drug studies conducted using traditional mouse models, which lack functional immune systems, could produce misleading results. To evaluate this theory they examined the efficacy of four chemotherapeutic or targeted anticancer drugs, alone and in combination, using mouse models representing three distinct breast cancer subtypes: Basal-like (GEMM), Luminal B (GEMM), and Claudin-low (non-GEMM). Drugs tested as single agents included carboplatin, paclitaxel, erlotinib, and lapatinib. The investigators used RNA expression analysis to profile tumors in order to develop signatures that corresponded to treatment and response and then tested their predictive potential using human patient data.

Results published in the June 18, 2013, online edition of the journal Clinical Cancer Research revealed that while lapatinib alone exhibited exceptional efficacy in one model system, generally single-agent activity was modest, while some combination therapies were more active and life prolonging. Through analysis of RNA expression in this large set of chemotherapy-treated mouse tumors, a pair of gene expression signatures was identified that predicted pathological complete response to neoadjuvant anthracycline/taxane (doxorubicin/paclitaxel) therapy in human patients with breast cancer.

Results presented in this study showed that mouse-derived gene signatures could predict drug response even after accounting for common clinical variables and other predictive genomic signatures, suggesting that mice could be used to identify new biomarkers for human cancer patients. Senior author Dr. Charles Perou, professor of molecular oncology research at the University of North Carolina, said, “This is a wonderful example of how well chosen mouse models can inform a human disease state. In this case we used years of research to match the models to specific human subtypes, and then treated the animals with therapies identical to what human cancer patients are receiving. We were ultimately able to develop a biomarker of treatment response from the mouse that works in humans.”

Related Links:
University of North Carolina



comments powered by Disqus

Channels

Genomics/Proteomics

view channel

New Program Encourages Wide Distribution of Genomic Data

A new data sharing program allows genomics researchers and practitioners to analyze, visualize, and share raw sequence data for individual patients or across populations straight from a local browser. The sequencing revolution is providing the raw data required to identify the genetic variants underlying rare diseases... Read more

Drug Discovery

view channel
Image: The nano-cocoon drug delivery system is biocompatible, specifically targets cancer cells, can carry a large drug load, and releases the drugs very quickly once inside the cancer cell. Ligands on the surface of the \"cocoon\" trick cancer cells into consuming it. Enzymes (the “worms\" in this image) inside the cocoon are unleashed once inside the cell, destroying the cocoon and releasing anticancer drugs into the cell (Photo courtesy of Dr. Zhen Gu, North Carolina State University).

Novel Anticancer Drug Delivery System Utilizes DNA-Based Nanocapsules

A novel DNA-based drug delivery system minimizes damage to normal tissues by utilizing the acidic microenvironment inside cancer cells to trigger the directed release of the anticancer drug doxorubicin (DOX).... Read more

Business

view channel

Interest in Commercial Applications for Proteomics Continues to Grow

Increasing interest in the field of proteomics has led to a series of agreements between private proteomic companies and academic institutions as well as deals between pharmaceutical companies and novel proteomics innovator biotech companies. Proteomics is the study of the structure and function of proteins.... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.