Features | Partner Sites | Information | LinkXpress
Sign In
PZ HTL SA
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC

Sialyltransferase Initiates New Line of Sugar-Modifying Enzymes

By BiotechDaily International staff writers
Posted on 11 Jul 2013
The first in a line of recombinant enzymes for the in vitro sialylation of glycoproteins and other macromolecules is now available for biotech researchers.

The new product, alpha-2,6-sialyltransferase, was recently launched by Roche (Basel, Switzerland). Sialyltransferases are enzymes that transfer sialic acid to the terminal portions of sialylated glycolipids (gangliosides) or to the N- or O-linked sugar chains of glycoproteins. Each sialyltransferase is specific for a particular sugar substrate. There are about twenty different sialyltransferases, which can be distinguished on the basis of the acceptor structure on which they act and on the type of sugar linkage they form.

The Roche alpha-2,6-sialyltransferase is based on a human genome sequence and expressed in mammalian expression systems. The enzyme was produced under animal-origin free conditions and offers a very high lot-to-lot consistency. Specifications call for the enzyme to deliver up to 95% bi-antennary sialylation of N-glycan chains within six to eight hours, a performance which is currently not offered by competitor products.

Over the coming months, Roche plans to complete the portfolio through launches of additional sialyl-and galactosyltransferase enzyme products.

“This launch is the first in a series to offer a complete glyco-engineering portfolio of key enzymes and activated sugars covering a broad spectrum of applications,” said Ruedi Stoffel, head of biochemical reagents and custom biotech at Roche. “The initial feedback from bio-manufacturing customers showed that our continuous scientific and technical support throughout the up-scaling and development process differentiates Roche as a strong partner.”

Related Links:
Roche




comments powered by Disqus

Channels

Drug Discovery

view channel
Image: The nano-cocoon drug delivery system is biocompatible, specifically targets cancer cells, can carry a large drug load, and releases the drugs very quickly once inside the cancer cell. Ligands on the surface of the \"cocoon\" trick cancer cells into consuming it. Enzymes (the “worms\" in this image) inside the cocoon are unleashed once inside the cell, destroying the cocoon and releasing anticancer drugs into the cell (Photo courtesy of Dr. Zhen Gu, North Carolina State University).

Novel Anticancer Drug Delivery System Utilizes DNA-Based Nanocapsules

A novel DNA-based drug delivery system minimizes damage to normal tissues by utilizing the acidic microenvironment inside cancer cells to trigger the directed release of the anticancer drug doxorubicin (DOX).... Read more

Lab Technologies

view channel

Experimental Physicists Find Clues into How Radiotherapy Kills Cancer Cells

A new discovery in experimental physics has implications for a better determination of the process in which radiotherapy destroys cancer cells. Dr. Jason Greenwood from Queen’s University Belfast (Ireland) Center for Plasma Physics collaborated with scientists from Italy and Spain on the work on electrons, and published... Read more

Business

view channel

Interest in Commercial Applications for Proteomics Continues to Grow

Increasing interest in the field of proteomics has led to a series of agreements between private proteomic companies and academic institutions as well as deals between pharmaceutical companies and novel proteomics innovator biotech companies. Proteomics is the study of the structure and function of proteins.... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.