Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Events

10 Oct 2016 - 12 Oct 2016
12 Nov 2016 - 16 Nov 2016

Sialyltransferase Initiates New Line of Sugar-Modifying Enzymes

By BiotechDaily International staff writers
Posted on 11 Jul 2013
Print article
The first in a line of recombinant enzymes for the in vitro sialylation of glycoproteins and other macromolecules is now available for biotech researchers.

The new product, alpha-2,6-sialyltransferase, was recently launched by Roche (Basel, Switzerland). Sialyltransferases are enzymes that transfer sialic acid to the terminal portions of sialylated glycolipids (gangliosides) or to the N- or O-linked sugar chains of glycoproteins. Each sialyltransferase is specific for a particular sugar substrate. There are about twenty different sialyltransferases, which can be distinguished on the basis of the acceptor structure on which they act and on the type of sugar linkage they form.

The Roche alpha-2,6-sialyltransferase is based on a human genome sequence and expressed in mammalian expression systems. The enzyme was produced under animal-origin free conditions and offers a very high lot-to-lot consistency. Specifications call for the enzyme to deliver up to 95% bi-antennary sialylation of N-glycan chains within six to eight hours, a performance which is currently not offered by competitor products.

Over the coming months, Roche plans to complete the portfolio through launches of additional sialyl-and galactosyltransferase enzyme products.

“This launch is the first in a series to offer a complete glyco-engineering portfolio of key enzymes and activated sugars covering a broad spectrum of applications,” said Ruedi Stoffel, head of biochemical reagents and custom biotech at Roche. “The initial feedback from bio-manufacturing customers showed that our continuous scientific and technical support throughout the up-scaling and development process differentiates Roche as a strong partner.”

Related Links:
Roche




Print article

Channels

Drug Discovery

view channel
Image: Ginger is the source of a novel class of nanolipid transport vector (Photo courtesy of Georgia State University).

Ginger-Derived Doxorubicin-Loaded Nanovectors as Drug Delivery for Cancer Therapy

A novel type of nanoparticle drug transport system based on lipids isolated from ginger was used to deliver the toxic chemotherapeutic agent doxorubicin (Dox) to colon cancer cells with minimal damage... Read more

Biochemistry

view channel
Image: A space-filling model of the anticonvulsant drug carbamazepine (Photo courtesy of Wikimedia Commons).

Wastewater May Contaminate Crops with Potentially Dangerous Pharmaceuticals

Reclaimed wastewater used to irrigate crops is contaminated with pharmaceutical residues that can be detected in the urine of those who consumed such produce. Investigators at the Hebrew University... Read more

Business

view channel

Collaborative Agreement to Aid in Setting Guidelines for Evaluating Potential Ebola Therapy

Cooperation between an Israeli biopharmaceutical company and medical branches of the US government is designed to set ground rules for continued evaluation of an experimental therapy for Ebola virus disease. RedHill Biopharma Ltd. (Tel Aviv, Israel), a biopharmaceutical company primarily focused on development and c... Read more
Copyright © 2000-2016 Globetech Media. All rights reserved.