Features | Partner Sites | Information | LinkXpress
Sign In
JIB
GLOBETECH PUBLISHING
GLOBETECH PUBLISHING

Sialyltransferase Initiates New Line of Sugar-Modifying Enzymes

By BiotechDaily International staff writers
Posted on 11 Jul 2013
The first in a line of recombinant enzymes for the in vitro sialylation of glycoproteins and other macromolecules is now available for biotech researchers.

The new product, alpha-2,6-sialyltransferase, was recently launched by Roche (Basel, Switzerland). Sialyltransferases are enzymes that transfer sialic acid to the terminal portions of sialylated glycolipids (gangliosides) or to the N- or O-linked sugar chains of glycoproteins. Each sialyltransferase is specific for a particular sugar substrate. There are about twenty different sialyltransferases, which can be distinguished on the basis of the acceptor structure on which they act and on the type of sugar linkage they form.

The Roche alpha-2,6-sialyltransferase is based on a human genome sequence and expressed in mammalian expression systems. The enzyme was produced under animal-origin free conditions and offers a very high lot-to-lot consistency. Specifications call for the enzyme to deliver up to 95% bi-antennary sialylation of N-glycan chains within six to eight hours, a performance which is currently not offered by competitor products.

Over the coming months, Roche plans to complete the portfolio through launches of additional sialyl-and galactosyltransferase enzyme products.

“This launch is the first in a series to offer a complete glyco-engineering portfolio of key enzymes and activated sugars covering a broad spectrum of applications,” said Ruedi Stoffel, head of biochemical reagents and custom biotech at Roche. “The initial feedback from bio-manufacturing customers showed that our continuous scientific and technical support throughout the up-scaling and development process differentiates Roche as a strong partner.”

Related Links:
Roche




comments powered by Disqus

Channels

Drug Discovery

view channel
Image: The five stages of biofilm development: (1) Initial attachment, (2) Irreversible attachment, (3) Maturation I, (4) Maturation II, and (5) Dispersion. Each stage of development in the diagram is paired with a photomicrograph of a developing P. aeruginosa biofilm. All photomicrographs are shown to same scale (Photo courtesy of Wikimedia Commons).

Ionic Liquids Disperse Bacterial Biofilms and Increase Antibiotic Susceptibility

The ionic liquid choline-geranate was shown to effectively eliminate the protective biofilm generated by bacteria such as Salmonella enterica and Pseudomonas aeruginosa and to significantly increase the... Read more

Therapeutics

view channel
Image: Hair follicle (blue) being attacked by T cells (green) (Photo courtesy of Christiano Lab/Columbia University Medical Center).

Hair Restoration Method Clones Patients’ Cells to Grow New Hair Follicles

Researchers have developed of a new hair restoration approach that uses a patient’s cells to grow new hair follicles. In addition, the [US] Food and Drugs Administration (FDA) recently approved a new drug... Read more

Lab Technologies

view channel
Image: Leica Microsystems launches the inverted research microscope platform Leica DMi8 (Photo courtesy of Leica Microsystems).

New Inverted Microscope Designed to Readily Adapt to Changing Research Demands

A new inverted microscope for biotech and other life science laboratories was designed to readily accommodate modifications and upgrades to allow it to keep current with changing research demands and interests.... Read more

Business

view channel

Partnership Established to Decode Bowel Disease

23andMe (Mountain View, CA,USA), a personal genetics company, is collaborating with Pfizer, Inc. (New York, NY, USA), in which the companies will seek to enroll 10,000 people with inflammatory bowel disease (IBD) in a research project designed to explore the genetic factors associated with the onset, progression, severity,... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.