Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Events

10 May 2016 - 16 May 2016
11 May 2016 - 13 May 2016

Prototype Microarray System Automates Antimicrobial Drug Development

By BiotechDaily International staff writers
Posted on 08 Jul 2013
Print article
A prototype microarray system enables automatic screening of 1,200 individual bacterial or fungal cultures for their response to candidate drugs or other compounds.

Microorganisms are typically still grown in Petri dishes, test tubes, and Erlenmeyer flasks in spite of the latest advances in miniaturization that have benefited other allied research fields, including genomics and proteomics. Culturing microorganisms in small scale would be particularly valuable in reducing time, costs, and reagent usage.

Toward this end, investigators at the University of Texas at San Antonio (USA) and the US Army Institute of Surgical Research (Fort Sam Houston, Texas, USA) developed, characterized, and applied a nanoscale culture system based on the opportunistic fungal pathogen, Candida albicans. The microarray consisted of 1,200 individual cultures of 30 nanoliters of C. albicans biofilms (“nano-biofilms”) encapsulated in an inert alginate matrix.

The microarray cultures were treated with a wide range of candidate drugs from the [US] National Cancer Institute (Bethesda, MD, USA) library, or with different [US] Food and Drugs Administration-approved, off-patent antifungal drugs in combination with FK506, an immunosuppressant, for identifying individual or synergistic combinations of compounds effective against biofilm infections.

Results published in the June 25, 2013, online edition of the journal mBio demonstrated that the nano-biofilm microarray was a robust and efficient tool for accelerating the drug discovery process. Combinatorial screening against a collection of 28 antifungal compounds in the presence of immunosuppressant FK506 (tacrolimus) identified six drugs that showed synergistic antifungal activity, while screening against the NCI challenge set small-molecule library identified three heretofore-unknown hits. This cell-based microarray platform allowed for miniaturization of microbial cell culture and was fully compatible with other high-throughput screening technologies.

"The antifungal screening results were similar to results in larger macroscale techniques," said senior author Dr. Anand Ramasubramanian, assistant professor of biomedical engineering at the University of Texas at San Antonio. "That gives us confidence that it could be used as a tool to replace existing techniques. We now are testing the microarrays with polymicrobial cultures—mixtures of fungi and bacteria—to see whether the technology can be used to explore treatments for mixed infections. We are also exploring clinical applications for the technique."

Related Links:

University of Texas at San Antonio
US Army Institute of Surgical Research
[US] National Cancer Institute



Print article

Channels

Genomics/Proteomics

view channel
Image: An artistic rendering of the Zika virus structure (Photo courtesy of Dr. Guntur Fibriansah, Duke-NUS Medical School).

High Resolution Structure of Zika virus Expected to Aid Vaccine Development

A team of molecular virologists used advanced cryo-electron microscopy techniques to establish a high-resolution structure for the Zika virus, a formerly neglected pathogen that has recently been associated... Read more

Drug Discovery

view channel

Experimental Small-Molecule Anticancer Drug Blocks RAS-binding Domains

The experimental small-molecule anticancer drug rigosertib was shown to block tumor growth by acting as an RAS-mimetic and interacting with the RAS binding domains of RAF kinases, resulting in their inability to bind to RAS, which inhibited the RAS-RAF-MEK pathway. Oncogenic activation of RAS genes due to point mutations... Read more

Biochemistry

view channel
Image: A space-filling model of the anticonvulsant drug carbamazepine (Photo courtesy of Wikimedia Commons).

Wastewater May Contaminate Crops with Potentially Dangerous Pharmaceuticals

Reclaimed wastewater used to irrigate crops is contaminated with pharmaceutical residues that can be detected in the urine of those who consumed such produce. Investigators at the Hebrew University... Read more

Business

view channel

European Biotech Agreement to Promote Antigen-Drug Conjugation Technology

Two European biotech companies have joined forces to exploit and commercialize an innovative, site-specific ADC (antigen-drug conjugate) conjugation technology. ProBioGen (Berlin, Germany), a company specializing in the development and manufacture of complex glycoproteins and Eucodis Bioscience (Vienna, Austria), a... Read more
Copyright © 2000-2016 Globetech Media. All rights reserved.