Features | Partner Sites | Information | LinkXpress
Sign In
JIB
GLOBETECH PUBLISHING
GLOBETECH PUBLISHING

Transcriptome Subtraction Pinpoints Unknown Viruses in Human Serum

By BiotechDaily International staff writers
Posted on 02 Jul 2013
An approach based on subtracting viral DNA and RNA from that normally present in human serum and then comparing the results to databases of known viral genomes enables screening patients for the presence of unknown viruses.

Investigators at St. Louis University (MO, USA) recently described the use of the next-generation sequencing approach called transcriptome subtraction to look for unknown viral sequences in samples of serum. Transcriptome subtraction requires ultradeep sequencing to establish which DNA and RNA belong to the human genome and separate this material from extraneous viral nucleic acids.

Depth in DNA sequencing refers to the number of times a nucleotide is read during the sequencing process. Deep sequencing indicates that the coverage, or depth, of the process is many times larger than the length of the sequence under study. The term "deep" has been used for a wide range of depths (at least seven times), and the newer term "ultradeep" has appeared in the scientific literature to refer to even higher coverage (at least 100 times). Even though the sequencing accuracy for each individual nucleotide is very high, the very large number of nucleotides in the genome means that if an individual genome is only sequenced once, there will be a significant number of sequencing errors. Furthermore, rare single-nucleotide polymorphisms (SNPs) are common. Hence to distinguish between sequencing errors and true SNPs, it is necessary to increase the sequencing accuracy even further by sequencing individual genomes a large number of times.

After the human genome was identified and removed from the equation, the investigators used data from well-curated databases and advanced bioinformatic tools to eliminate DNA and RNA from all known viruses. Any nucleic acids remaining belonged to unknown viruses.

“We have discovered a technology that allows us to detect new viruses,” said contributing author Dr. Adrian Di Bisceglie, professor of internal medicine at Saint Louis University. “We isolate DNA and RNA, amplify the amount of genetic material present in the blood, do ultradeep sequencing, and use an algorithm to search for matches for every known piece of genetic code, both human and for microbes. Just as the human microbiome project is chronicling the bacteria that live and coexist in every person, we also are studying the human virome to know more about the viruses that live in all of us—we believe not all are harmful and some may even be beneficial.”

The study was published in the June 11, 2013, online edition of the journal Biochemical and Biophysical Research Communications.

Related Links:

St. Louis University



comments powered by Disqus

Channels

Genomics/Proteomics

view channel
Image: A leukemia cell coated with antibody is marked for destruction by activated natural killer cells (Photo courtesy of the University of Southern California).

Leukemia Cells Are Killed in Culture by Immune Cells Grown from the Same Patient

Immune system natural killer (NK) cells were isolated from leukemia patients, expanded in culture, and then shown in an in vitro system to attack and destroy cancer cells from the original cell donors.... Read more

Drug Discovery

view channel
Image: Synthetic ion transporters can induce apoptosis by facilitating chloride anion transport into cells (Photo courtesy of the University of Texas, Austin).

Experimental Drug Kills Cancer Cells by Interfering with Their Ion Transport Mechanism

An experimental anticancer drug induces cells to enter a molecular pathway leading to apoptosis by skewing their ion transport systems to greatly favor the influx of chloride anions. To promote development... Read more

Therapeutics

view channel
Image: Liver cells regenerated in mice treated with a new drug (right) compared with a control group (center) after partial liver removal. Healthy liver cells are shown at left (Photo courtesy of Marshall et al, 2014, the Journal of Experimental Medicine).

New Drug Triggers Liver Regeneration After Surgery

Investigators have revealed that an innovative complement inhibitor decreases complement-mediated liver cell death, and actually stimulates postsurgery liver regrowth in mice. Liver cancer often results... Read more

Lab Technologies

view channel

White-Matter Deficits Found in Codeine-Containing Cough Syrup Users

A magnetic resonance imaging (MRI) study of chronic users of codeine-containing cough syrups (CCS) has found deficits in specific regions of brain white matter and linked these changes with increased impulsivity in codeine-containing cough syrup users. These findings were consistent with findings from earlier research of... Read more

Business

view channel

Partnership Established to Decode Bowel Disease

23andMe (Mountain View, CA,USA), a personal genetics company, is collaborating with Pfizer, Inc. (New York, NY, USA), in which the companies will seek to enroll 10,000 people with inflammatory bowel disease (IBD) in a research project designed to explore the genetic factors associated with the onset, progression, severity,... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.