Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING
JIB
GLOBETECH PUBLISHING

New Revelations from 3D Map of Blood Vessels in Cerebral Cortex

By BiotechDaily International staff writers
Posted on 26 Jun 2013
Within a sensory area of the brain’s mammalian brain loop, blood vessels have been shown to connect in surprising ways, a new imaging map has revealed.

The study, published June 9, 2013, in the early online edition of the journal Nature Neuroscience, reported on vascular architecture within a well-known area of the cerebral cortex and examines what that structure means for functional imaging of the brain and the onset of a kind of dementia. Dr. David Kleinfeld, professor of physics and neurobiology at the University of California, San Diego (UCSD; USA), and colleagues mapped blood vessels in an area of the mouse brain that receives sensory signals from the whiskers.

The organization of neural cells in this brain region has been well understood, as was a pattern of blood vessels that plummet from the surface and return from deep of the brain, but the network in between was unexplored. Nevertheless, these tiny arterioles and venules deliver oxygen and nutrients to energy-hungry brain cells and carry away wastes.

The investigators traced this precise network by filling the vessels with a fluorescent gel. Then, using an automated system developed by coauthor Dr. Philbert Tsai, which removes thin layers of tissue with a laser while taking a series of images to reconstructed the three-dimensional (3D) network of tiny vessels. The project centered on a region of the cerebral cortex in which the nerve cells are so well known that they can be traced to individual whiskers. These neurons gather in “barrels,” one per whisker, an organizational pattern evidenced in other sensory areas as well.

The scientists expected each whisker barrel to correlate with its own blood supply, but that was not the case. The blood vessels do not line up with the functional structure of the neurons they feed. “This was a surprise, because the blood vessels develop in tandem with neural tissue,” Dr. Kleinfeld said. Instead, microvessels beneath the surface loop and connect in patterns that do not obviously correspond to the barrels.

To search for patterns, the researchers employed a type of mathematics called graph theory, which describes systems as interconnected nodes. Using this strategy, no concealed subunits arose, revealing that the mesh undeniably forms a continuous network they call the “angiome.”

The vascular maps traced in this study raise a question of what the researchers are in reality visualizing in a widely used brain imaging modality called functional magnetic resonance imaging (MRI), which in one form measures brain activity by recording changes in oxygen levels in the blood. The idea is that activity will locally deplete oxygen. Therefore, the researchers shook whiskers on individual mice and discovered that optical signals linked with depleted oxygen centered on the barrels, where electrical recordings confirmed neural activity. Hence, brain mapping does not depend on a modular arrangement of blood vessels.

The researchers also calculated patterns of blood flow based on the diameters and connections of the vessels and questioned how this would change if a feeder arteriole were blocked. The map allowed them to detect “perfusion domains,” which predict the volumes of lesions that result when a clot occludes a vessel. Significantly, they were able to build a physical model of how these lesions form, as may occur in cases of human dementia.

Related Links:

University of California, San Diego



comments powered by Disqus

Channels

Drug Discovery

view channel
Image: The European Commission has approved the use of Avastin combined with chemotherapy as a treatment for women with recurrent ovarian cancer (Photo courtesy of Genentech).

Drug for Treatment of Platinum Resistant Recurrent Ovarian Cancer Approved for Use in Europe

For the first time in more than 15 years the European Commission (EC) has approved a new therapeutic option for the most difficult to treat form of ovarian cancer. Ovarian cancer causes more deaths... Read more

Therapeutics

view channel
Image: This type of electronic pacemaker could become obsolete if induction of biological pacemaker cells by gene therapy proves successful (Photo courtesy of Wikimedia Commons).

Gene Therapy Induces Functional Pacemaker Cells in Pig Heart Failure Model

Cardiovascular disease researchers working with a porcine heart failure model have demonstrated the practicality of using gene therapy to replace implanted electronic pacemakers to regulate heartbeat.... Read more

Business

view channel

Global Computational Biology Sector Expected to Reach over USD 4 Billion by 2020

The global market for computational biology is expected to reach USD 4.285 billion by 2020 growing at a compound annual growth rate (CAGR) of 21.1%, according to new market research. Steady surge in the usage and application of computational biology for bioinformatics R&D programs designed for sequencing genomes... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.