Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING
PZ HTL SA
GLOBETECH PUBLISHING

New Revelations from 3D Map of Blood Vessels in Cerebral Cortex

By BiotechDaily International staff writers
Posted on 26 Jun 2013
Within a sensory area of the brain’s mammalian brain loop, blood vessels have been shown to connect in surprising ways, a new imaging map has revealed.

The study, published June 9, 2013, in the early online edition of the journal Nature Neuroscience, reported on vascular architecture within a well-known area of the cerebral cortex and examines what that structure means for functional imaging of the brain and the onset of a kind of dementia. Dr. David Kleinfeld, professor of physics and neurobiology at the University of California, San Diego (UCSD; USA), and colleagues mapped blood vessels in an area of the mouse brain that receives sensory signals from the whiskers.

The organization of neural cells in this brain region has been well understood, as was a pattern of blood vessels that plummet from the surface and return from deep of the brain, but the network in between was unexplored. Nevertheless, these tiny arterioles and venules deliver oxygen and nutrients to energy-hungry brain cells and carry away wastes.

The investigators traced this precise network by filling the vessels with a fluorescent gel. Then, using an automated system developed by coauthor Dr. Philbert Tsai, which removes thin layers of tissue with a laser while taking a series of images to reconstructed the three-dimensional (3D) network of tiny vessels. The project centered on a region of the cerebral cortex in which the nerve cells are so well known that they can be traced to individual whiskers. These neurons gather in “barrels,” one per whisker, an organizational pattern evidenced in other sensory areas as well.

The scientists expected each whisker barrel to correlate with its own blood supply, but that was not the case. The blood vessels do not line up with the functional structure of the neurons they feed. “This was a surprise, because the blood vessels develop in tandem with neural tissue,” Dr. Kleinfeld said. Instead, microvessels beneath the surface loop and connect in patterns that do not obviously correspond to the barrels.

To search for patterns, the researchers employed a type of mathematics called graph theory, which describes systems as interconnected nodes. Using this strategy, no concealed subunits arose, revealing that the mesh undeniably forms a continuous network they call the “angiome.”

The vascular maps traced in this study raise a question of what the researchers are in reality visualizing in a widely used brain imaging modality called functional magnetic resonance imaging (MRI), which in one form measures brain activity by recording changes in oxygen levels in the blood. The idea is that activity will locally deplete oxygen. Therefore, the researchers shook whiskers on individual mice and discovered that optical signals linked with depleted oxygen centered on the barrels, where electrical recordings confirmed neural activity. Hence, brain mapping does not depend on a modular arrangement of blood vessels.

The researchers also calculated patterns of blood flow based on the diameters and connections of the vessels and questioned how this would change if a feeder arteriole were blocked. The map allowed them to detect “perfusion domains,” which predict the volumes of lesions that result when a clot occludes a vessel. Significantly, they were able to build a physical model of how these lesions form, as may occur in cases of human dementia.

Related Links:

University of California, San Diego



Channels

Genomics/Proteomics

view channel
Image: The TheraCyte cell encapsulation device (Photo courtesy of TheraCyte, Inc.).

Encapsulated Human-Insulin-Producing Progenitor Cells Cure Diabetes in Mouse Model

A breakthrough system that allows subcutaneous implantation of encapsulated immature pancreatic cells (beta progenitor cells) was shown to produce enough insulin to correct the symptoms of diabetes in a mouse model.... Read more

Drug Discovery

view channel
Image: Chitosan is derived from the shells of shrimp and other sea crustaceans, including Alaskan pink shrimp, pictured here (Photo courtesy of NOAA - [US] National Oceanic and Atmospheric Administration).

Chitosan Treatment Clears the Way for Antibiotics to Eliminate Recurrent Urinary Tract Infections

Recurrent urinary tract infection was successfully resolved in a mouse model by treatment with the exfoliant chitosan followed by a round of antibiotics. Bacterial urinary tract infection (UTI), most... Read more

Biochemistry

view channel

Mitochondrial Cause of Aging Can Be Reversed

Researchers have found a cause of aging in lab animals that can be reversed, possibly providing an avenue for new treatments for age-related diseases including type 2 diabetes, cancer, muscle wasting, and inflammatory diseases. The researchers plan to begin human trials late 2014. The study, which was published December... Read more

Therapeutics

view channel

Cytokine Identified That Causes Mucositis in Cancer Therapy Patients

The action of the cytokine interleukin 1-beta (IL-1beta) has been found to underlie the onset of mucositis, a common, severe side effect of chemotherapy and irradiation of cancer patients. Mucositis occurs as a result of cell death in reaction to chemo- or radiotherapy. The mucosal lining of the mouth becomes thin, may... Read more

Business

view channel

Analytical Sciences Trade Fair Declared a Rousing Success

Organizers of this year's 24th "analytica" biosciences trade fair have reported significant increases in both the number of visitors and exhibitors compared to the 2012 event. The analytica trade fair for laboratory technology, analysis, and biotechnology has been held at the Munich (Germany) Trade Fair Center every... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.