Features | Partner Sites | Information | LinkXpress
Sign In
BioConferenceLive
JIB
GLOBETECH PUBLISHING

A Global Alliance Established for Sharing Genomic Data

By BiotechDaily International staff writers
Posted on 24 Jun 2013
A shared framework for analyzing and distributing genomic information should soon speed medical progress and innovations.

Nearly 70 organizations in research, healthcare, and disease advocacy have agreed to take part in a global alliance focused on standardizing and sharing genomic and clinical data. “The cost of genome sequencing has fallen one-million fold in the past several years, fueling an explosion of information about the genetic basis of human health and disease,” wrote the authors of a white report announcing the alliance. In principle, this plethora of genome data could reveal the genetic basis of inherited and infectious disease, cancer, and drug responses. “However, we are not organized to seize this extraordinary opportunity.”

The problem is that the data are “collected and studied in silos: by disease, by institution, and by country,” reported the investigators. Tools and techniques for study are not standardized and can be incompatible. Furthermore, there are not agreed upon regulatory procedures that respect the privacy of people who have donated their genome sequences to research projects. All this “inhibits learning and improving healthcare,” they reported.

To address these problems, the alliance will develop international standards and infrastructure to share and integrate data in a controlled, secure, and interpretable way that upholds patient autonomy and right to privacy. Participants in the accord include the US National Institutes of Health (Bethesda, MD, USA), the Wellcome Trust Sanger Institute (Hinxton, Cambridgeshire, UK), and the Beijing Genomics institute (BGI; Beijing, China), as well as universities and hospitals.

The large pool of genomic sequences and medical data expected from the alliance is the sort of dataset required to determine the genetic basis of both cancer and rare diseases, recently reported an item in the New York Times. The mutations underlying these disorders are just too rare to be studied in data collected at a single institution.

A disease might occur in one in 1,000 or one in 100,000 babies, according to Dr. David Altshuler, deputy director and chief academic officer at the Broad Institute of Harvard University (Cambridge, MA, USA) and the Massachusetts Institute of Technology (MIT; Cambridge, MA, USA). A medical center might never see a child with that disease, or might see just one. “Since everyone sees zero or one, no one ever learns,” Dr. Altshuler said.

In spite of the commendable goals of the alliance, researchers may be reluctant to share hard-won genomic information, a “valuable commodity,” the researcher noted. A big question for the group is whether it can convince institutions to share their most meaningful data. “The mission is unquestionably worthy,” said cardiologist Dr. Eric Topol, director of the Scripps Translational Science Institute (La Jolla, CA, USA), which has not yet considered joining the alliance. But, he adds, “it means taking the walls down, and that’s tricky—because you’ve got each center wanting to hold on to its own data, and the loss of control is a very difficult concept.”

Related Links:
US National Institutes of Health
Wellcome Trust Sanger Institute
Massachusetts Institute of Technology



comments powered by Disqus

Channels

Genomics/Proteomics

view channel
Image: In the liver tissue of obese animals with type II diabetes, unhealthy, fat-filled cells are prolific (small white cells, panel A). After chronic treatment through FGF1 injections, the liver cells successfully lose fat and absorb sugar from the bloodstream (small purple cells, panel B) and more closely resemble cells of normal, non-diabetic animals (Photo courtesy of the Salk Institute for Biological Studies).

Fibroblast Growth Factor 1 Treatment Restores Glucose Control in Mouse Diabetes Model

A "vaccine" based on the metabolic regulator fibroblast growth factor 1 (FGF1) removed the insulin resistance that characterizes type II diabetes and restored the body's natural ability to manage its glucose... Read more

Drug Discovery

view channel
Image: Molecular rendering of the crystal structure of parkin (Photo courtesy of Wikimedia Commons).

Cinnamon Feeding Blocks Development of Parkinson's Disease in Mouse Model

A team of neurological researchers has identified a molecular mechanism by which cinnamon acts to protect neurons from damage caused by Parkinson's disease (PD) in a mouse model of the syndrome.... Read more

Therapeutics

view channel
Image: This type of electronic pacemaker could become obsolete if induction of biological pacemaker cells by gene therapy proves successful (Photo courtesy of Wikimedia Commons).

Gene Therapy Induces Functional Pacemaker Cells in Pig Heart Failure Model

Cardiovascular disease researchers working with a porcine heart failure model have demonstrated the practicality of using gene therapy to replace implanted electronic pacemakers to regulate heartbeat.... Read more

Business

view channel

Cancer Immunotherapy Sector Predicted to Surge to USD 9 Billion Across Major Pharma Through 2022

The immunotherapy market will experience substantial growth through 2022, increasing from USD 1.1 billion in 2012 to nearly USD 9 billion in 2022 (corresponding to 23.8% annual growth) in the United Kingdom, United States, France, Germany, Italy, Spain, and Japan, according to recent market research. This notable growth... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.