Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING LLC
PZ HTL SA
GLOBETECH PUBLISHING LLC

A Global Alliance Established for Sharing Genomic Data

By BiotechDaily International staff writers
Posted on 24 Jun 2013
A shared framework for analyzing and distributing genomic information should soon speed medical progress and innovations.

Nearly 70 organizations in research, healthcare, and disease advocacy have agreed to take part in a global alliance focused on standardizing and sharing genomic and clinical data. “The cost of genome sequencing has fallen one-million fold in the past several years, fueling an explosion of information about the genetic basis of human health and disease,” wrote the authors of a white report announcing the alliance. In principle, this plethora of genome data could reveal the genetic basis of inherited and infectious disease, cancer, and drug responses. “However, we are not organized to seize this extraordinary opportunity.”

The problem is that the data are “collected and studied in silos: by disease, by institution, and by country,” reported the investigators. Tools and techniques for study are not standardized and can be incompatible. Furthermore, there are not agreed upon regulatory procedures that respect the privacy of people who have donated their genome sequences to research projects. All this “inhibits learning and improving healthcare,” they reported.

To address these problems, the alliance will develop international standards and infrastructure to share and integrate data in a controlled, secure, and interpretable way that upholds patient autonomy and right to privacy. Participants in the accord include the US National Institutes of Health (Bethesda, MD, USA), the Wellcome Trust Sanger Institute (Hinxton, Cambridgeshire, UK), and the Beijing Genomics institute (BGI; Beijing, China), as well as universities and hospitals.

The large pool of genomic sequences and medical data expected from the alliance is the sort of dataset required to determine the genetic basis of both cancer and rare diseases, recently reported an item in the New York Times. The mutations underlying these disorders are just too rare to be studied in data collected at a single institution.

A disease might occur in one in 1,000 or one in 100,000 babies, according to Dr. David Altshuler, deputy director and chief academic officer at the Broad Institute of Harvard University (Cambridge, MA, USA) and the Massachusetts Institute of Technology (MIT; Cambridge, MA, USA). A medical center might never see a child with that disease, or might see just one. “Since everyone sees zero or one, no one ever learns,” Dr. Altshuler said.

In spite of the commendable goals of the alliance, researchers may be reluctant to share hard-won genomic information, a “valuable commodity,” the researcher noted. A big question for the group is whether it can convince institutions to share their most meaningful data. “The mission is unquestionably worthy,” said cardiologist Dr. Eric Topol, director of the Scripps Translational Science Institute (La Jolla, CA, USA), which has not yet considered joining the alliance. But, he adds, “it means taking the walls down, and that’s tricky—because you’ve got each center wanting to hold on to its own data, and the loss of control is a very difficult concept.”

Related Links:
US National Institutes of Health
Wellcome Trust Sanger Institute
Massachusetts Institute of Technology



comments powered by Disqus

Channels

Genomics/Proteomics

view channel
Image: This novel, flexible film that can react to light is a promising step toward an artificial retina (Photo courtesy of the American Chemical Society).

Novel Nanofilm May Be Artificial Retina Precursor

Researchers have used advanced nanotechnology techniques to develop a light-sensitive film that has potential for future artificial retina applications. Investigators at the Hebrew University of Jerusalem... Read more

Drug Discovery

view channel
Image: Disruption and removal of malaria parasites by the experimental drug (+)-SJ733 (Photo courtesy of the University of California, San Francisco).

Experimental Antimalaria Drug Induces the Immune System to Destroy Infected Red Blood Cells

An experimental drug for the treatment of malaria was found to induce morphological changes in infected erythrocytes that enabled the immune system to recognize and eliminate them. Investigators at... Read more

Biochemistry

view channel

Blocking Enzyme Switch Turns Off Tumor Growth in T-Cell Acute Lymphoblastic Leukemia

Researchers recently reported that blocking the action of an enzyme “switch” needed to activate tumor growth is emerging as a practical strategy for treating T-cell acute lymphoblastic leukemia. An estimated 25% of the 500 US adolescents and young adults diagnosed yearly with this aggressive disease fail to respond to... Read more

Business

view channel

R&D Partnership Initiated to Reduce Development Time for New Drugs

nanoPET Pharma, GmbH (Berlin, Germany) signed an open-ended framework contract with the international pharmaceutical company Boehringer Ingelheim (Ridgefield, CT, USA). By developing customized contrast agents for research in both basic and preclinical studies, nanoPET Pharma will contribute to the enhancement of Boehringer... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.