Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC
GLOBETECH MEDIA

Novel Solid-State Nanopore System Differentiates Short, Single-Stranded DNA Homopolymers

By BiotechDaily International staff writers
Posted on 06 Jun 2013
Image: Senior author Dr. Marija Drndic (Photo courtesy of the University of Pennsylvania).
Image: Senior author Dr. Marija Drndic (Photo courtesy of the University of Pennsylvania).
Image: Nanopore-based analysis is a single-molecule technique that promises to carry out a range of analyses orders of magnitude faster and more economically than current methods, including length measurement, specific sequence detection, single-molecule dynamics, and ultimately de novo sequencing (Photo courtesy of the University of Pennsylvania).
Image: Nanopore-based analysis is a single-molecule technique that promises to carry out a range of analyses orders of magnitude faster and more economically than current methods, including length measurement, specific sequence detection, single-molecule dynamics, and ultimately de novo sequencing (Photo courtesy of the University of Pennsylvania).
A recent paper described the development of a prototype solid-state nanopore mechanism for the easily reproducible study of the nucleotide bases comprising single DNA molecules.

While biological nanopores have recently demonstrated the ability to resolve single nucleotides within individual DNA molecules, similar developments with solid-state nanopores have lagged, due to challenges both in fabricating stable nanopores of similar dimensions as biological nanopores and in achieving sufficiently low-noise and high-bandwidth recordings. Solid-state nanopore devices, comprising thin solid-state membranes, offer advantages over their biological counterparts in that they can be more easily shipped and integrated with other electronics.

The nanopores concept involves using an applied voltage to drive charged molecules, such as DNA or proteins, through a narrow pore that separates chambers of electrolyte solution. This voltage also drives a flow of electrolyte ions through the pore, measured as an electric current. When molecules pass through the pore, they block the flow of ions, and thus their structure and length can be determined based on the degree and duration of the resulting current reductions.

Investigators at the University of Pennsylvania (Philadelphia, USA; www.upenn.edu) described in the April 26, 2013, online edition of the journal ACS Nano the preparation of small silicon nitride nanopores (0.8–2.0 nm in diameter, in 5.0–8.0 nm-thick membranes). These nanopores could resolve differences between ionic current signals produced by short (30 base) single stranded DNA homopolymers poly(adenine), poly(cytosine), and poly(thymine), when combined with measurement electronics that allowed a signal-to-noise ratio of better than 10 to be achieved at 1-MHz bandwidth.

“While biological nanopores have shown the ability to resolve single nucleotides, solid-state alternatives have lagged due to two challenges of actually manufacturing the right-sized pores and achieving high-signal, low-noise and high-bandwidth measurements,” said senior author Dr. Marija Drndić, associate professor of physics and astronomy at the University of Pennsylvania. “We are attacking those two challenges here.”

“The way we make the nanopores in silicon nitride makes them taper off, so that the effective thickness is about a third of the rest of the membrane,” said Dr. Drndić. “We show that these small pores are sensitive to the base content, and we saw these results in pores with diameters between one and two nanometers, which is actually encouraging because it suggests some manufacturing variability may be okay.”

The investigators acknowledged that identifying intramolecular DNA sequences with silicon nitride nanopores will require further improvements in nanopore sensitivity and noise levels. Nonetheless, the homopolymer differentiation described in the current study represented an important milestone in the development of solid-state nanopores.

Related Links:

University of Pennsylvania



Channels

Genomics/Proteomics

view channel
Image: The photo shows a mouse pancreatic islet as seen by light microscopy. Beta cells can be recognized by the green insulin staining. Glucagon is labeled in red and the nuclei in blue (Photo courtesy of Wikimedia Commons).

Regenerative Potential Is a Trait of Mature Tissues, Not an Innate Feature of Newly Born Cells

Diabetes researchers have found that the ability of insulin-producing beta cells to replicate and respond to elevated glucose concentrations is absent in very young animals and does not appear until after weaning.... Read more

Drug Discovery

view channel
Image: Wafers like the one shown here are used to create “organ-on-a-chip” devices to model human tissue (Photo courtesy of Dr. Anurag Mathur, University of California, Berkeley).

Human Heart-on-a-Chip Cultures May Replace Animal Models for Drug Development and Safety Screening

Human heart cells growing in an easily monitored silicon chip culture system may one day replace animal-based model systems for drug development and safety screening. Drug discovery and development... Read more

Biochemistry

view channel
Image:  Model depiction of a novel cellular mechanism by which regulation of cryptochromes Cry1 and Cry2 enables coordination of a protective transcriptional response to DNA damage caused by genotoxic stress (Photo courtesy of the journal eLife, March 2015, Papp SJ, Huber AL, et al.).

Two Proteins Critical for Circadian Cycles Protect Cells from Mutations

Scientists have discovered that two proteins critical for maintaining healthy day-night cycles also have an unexpected role in DNA repair and protecting cells against genetic mutations that could lead... Read more

Business

view channel

Roche Acquires Signature Diagnostics to Advance Translational Research

Roche (Basel, Switzerland) will advance translational research for next generation sequencing (NGS) diagnostics by leveraging the unique expertise of Signature Diagnostics AG (Potsdam, Germany) in biobanks and development of novel NGS diagnostic assays. Signature Diagnostics is a privately held translational oncology... Read more
 
Copyright © 2000-2015 Globetech Media. All rights reserved.