Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING
PZ HTL SA
GLOBETECH PUBLISHING

Novel Solid-State Nanopore System Differentiates Short, Single-Stranded DNA Homopolymers

By BiotechDaily International staff writers
Posted on 06 Jun 2013
Image: Senior author Dr. Marija Drndic (Photo courtesy of the University of Pennsylvania).
Image: Senior author Dr. Marija Drndic (Photo courtesy of the University of Pennsylvania).
Image: Nanopore-based analysis is a single-molecule technique that promises to carry out a range of analyses orders of magnitude faster and more economically than current methods, including length measurement, specific sequence detection, single-molecule dynamics, and ultimately de novo sequencing (Photo courtesy of the University of Pennsylvania).
Image: Nanopore-based analysis is a single-molecule technique that promises to carry out a range of analyses orders of magnitude faster and more economically than current methods, including length measurement, specific sequence detection, single-molecule dynamics, and ultimately de novo sequencing (Photo courtesy of the University of Pennsylvania).
A recent paper described the development of a prototype solid-state nanopore mechanism for the easily reproducible study of the nucleotide bases comprising single DNA molecules.

While biological nanopores have recently demonstrated the ability to resolve single nucleotides within individual DNA molecules, similar developments with solid-state nanopores have lagged, due to challenges both in fabricating stable nanopores of similar dimensions as biological nanopores and in achieving sufficiently low-noise and high-bandwidth recordings. Solid-state nanopore devices, comprising thin solid-state membranes, offer advantages over their biological counterparts in that they can be more easily shipped and integrated with other electronics.

The nanopores concept involves using an applied voltage to drive charged molecules, such as DNA or proteins, through a narrow pore that separates chambers of electrolyte solution. This voltage also drives a flow of electrolyte ions through the pore, measured as an electric current. When molecules pass through the pore, they block the flow of ions, and thus their structure and length can be determined based on the degree and duration of the resulting current reductions.

Investigators at the University of Pennsylvania (Philadelphia, USA; www.upenn.edu) described in the April 26, 2013, online edition of the journal ACS Nano the preparation of small silicon nitride nanopores (0.8–2.0 nm in diameter, in 5.0–8.0 nm-thick membranes). These nanopores could resolve differences between ionic current signals produced by short (30 base) single stranded DNA homopolymers poly(adenine), poly(cytosine), and poly(thymine), when combined with measurement electronics that allowed a signal-to-noise ratio of better than 10 to be achieved at 1-MHz bandwidth.

“While biological nanopores have shown the ability to resolve single nucleotides, solid-state alternatives have lagged due to two challenges of actually manufacturing the right-sized pores and achieving high-signal, low-noise and high-bandwidth measurements,” said senior author Dr. Marija Drndić, associate professor of physics and astronomy at the University of Pennsylvania. “We are attacking those two challenges here.”

“The way we make the nanopores in silicon nitride makes them taper off, so that the effective thickness is about a third of the rest of the membrane,” said Dr. Drndić. “We show that these small pores are sensitive to the base content, and we saw these results in pores with diameters between one and two nanometers, which is actually encouraging because it suggests some manufacturing variability may be okay.”

The investigators acknowledged that identifying intramolecular DNA sequences with silicon nitride nanopores will require further improvements in nanopore sensitivity and noise levels. Nonetheless, the homopolymer differentiation described in the current study represented an important milestone in the development of solid-state nanopores.

Related Links:

University of Pennsylvania



Channels

Genomics/Proteomics

view channel
Image: The TheraCyte cell encapsulation device (Photo courtesy of TheraCyte, Inc.).

Encapsulated Human-Insulin-Producing Progenitor Cells Cure Diabetes in Mouse Model

A breakthrough system that allows subcutaneous implantation of encapsulated immature pancreatic cells (beta progenitor cells) was shown to produce enough insulin to correct the symptoms of diabetes in a mouse model.... Read more

Drug Discovery

view channel
Image: Chitosan is derived from the shells of shrimp and other sea crustaceans, including Alaskan pink shrimp, pictured here (Photo courtesy of NOAA - [US] National Oceanic and Atmospheric Administration).

Chitosan Treatment Clears the Way for Antibiotics to Eliminate Recurrent Urinary Tract Infections

Recurrent urinary tract infection was successfully resolved in a mouse model by treatment with the exfoliant chitosan followed by a round of antibiotics. Bacterial urinary tract infection (UTI), most... Read more

Biochemistry

view channel

Mitochondrial Cause of Aging Can Be Reversed

Researchers have found a cause of aging in lab animals that can be reversed, possibly providing an avenue for new treatments for age-related diseases including type 2 diabetes, cancer, muscle wasting, and inflammatory diseases. The researchers plan to begin human trials late 2014. The study, which was published December... Read more

Therapeutics

view channel

Cytokine Identified That Causes Mucositis in Cancer Therapy Patients

The action of the cytokine interleukin 1-beta (IL-1beta) has been found to underlie the onset of mucositis, a common, severe side effect of chemotherapy and irradiation of cancer patients. Mucositis occurs as a result of cell death in reaction to chemo- or radiotherapy. The mucosal lining of the mouth becomes thin, may... Read more

Business

view channel

Analytical Sciences Trade Fair Declared a Rousing Success

Organizers of this year's 24th "analytica" biosciences trade fair have reported significant increases in both the number of visitors and exhibitors compared to the 2012 event. The analytica trade fair for laboratory technology, analysis, and biotechnology has been held at the Munich (Germany) Trade Fair Center every... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.