Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING
JIB
GLOBETECH PUBLISHING

Novel Solid-State Nanopore System Differentiates Short, Single-Stranded DNA Homopolymers

By BiotechDaily International staff writers
Posted on 06 Jun 2013
Image: Senior author Dr. Marija Drndic (Photo courtesy of the University of Pennsylvania).
Image: Senior author Dr. Marija Drndic (Photo courtesy of the University of Pennsylvania).
Image: Nanopore-based analysis is a single-molecule technique that promises to carry out a range of analyses orders of magnitude faster and more economically than current methods, including length measurement, specific sequence detection, single-molecule dynamics, and ultimately de novo sequencing (Photo courtesy of the University of Pennsylvania).
Image: Nanopore-based analysis is a single-molecule technique that promises to carry out a range of analyses orders of magnitude faster and more economically than current methods, including length measurement, specific sequence detection, single-molecule dynamics, and ultimately de novo sequencing (Photo courtesy of the University of Pennsylvania).
A recent paper described the development of a prototype solid-state nanopore mechanism for the easily reproducible study of the nucleotide bases comprising single DNA molecules.

While biological nanopores have recently demonstrated the ability to resolve single nucleotides within individual DNA molecules, similar developments with solid-state nanopores have lagged, due to challenges both in fabricating stable nanopores of similar dimensions as biological nanopores and in achieving sufficiently low-noise and high-bandwidth recordings. Solid-state nanopore devices, comprising thin solid-state membranes, offer advantages over their biological counterparts in that they can be more easily shipped and integrated with other electronics.

The nanopores concept involves using an applied voltage to drive charged molecules, such as DNA or proteins, through a narrow pore that separates chambers of electrolyte solution. This voltage also drives a flow of electrolyte ions through the pore, measured as an electric current. When molecules pass through the pore, they block the flow of ions, and thus their structure and length can be determined based on the degree and duration of the resulting current reductions.

Investigators at the University of Pennsylvania (Philadelphia, USA; www.upenn.edu) described in the April 26, 2013, online edition of the journal ACS Nano the preparation of small silicon nitride nanopores (0.8–2.0 nm in diameter, in 5.0–8.0 nm-thick membranes). These nanopores could resolve differences between ionic current signals produced by short (30 base) single stranded DNA homopolymers poly(adenine), poly(cytosine), and poly(thymine), when combined with measurement electronics that allowed a signal-to-noise ratio of better than 10 to be achieved at 1-MHz bandwidth.

“While biological nanopores have shown the ability to resolve single nucleotides, solid-state alternatives have lagged due to two challenges of actually manufacturing the right-sized pores and achieving high-signal, low-noise and high-bandwidth measurements,” said senior author Dr. Marija Drndić, associate professor of physics and astronomy at the University of Pennsylvania. “We are attacking those two challenges here.”

“The way we make the nanopores in silicon nitride makes them taper off, so that the effective thickness is about a third of the rest of the membrane,” said Dr. Drndić. “We show that these small pores are sensitive to the base content, and we saw these results in pores with diameters between one and two nanometers, which is actually encouraging because it suggests some manufacturing variability may be okay.”

The investigators acknowledged that identifying intramolecular DNA sequences with silicon nitride nanopores will require further improvements in nanopore sensitivity and noise levels. Nonetheless, the homopolymer differentiation described in the current study represented an important milestone in the development of solid-state nanopores.

Related Links:

University of Pennsylvania



comments powered by Disqus

Channels

Drug Discovery

view channel
Image: Synthetic ion transporters can induce apoptosis by facilitating chloride anion transport into cells (Photo courtesy of the University of Texas, Austin).

Experimental Drug Kills Cancer Cells by Interfering with Their Ion Transport Mechanism

An experimental anticancer drug induces cells to enter a molecular pathway leading to apoptosis by skewing their ion transport systems to greatly favor the influx of chloride anions. To promote development... Read more

Therapeutics

view channel
Image: Liver cells regenerated in mice treated with a new drug (right) compared with a control group (center) after partial liver removal. Healthy liver cells are shown at left (Photo courtesy of Marshall et al, 2014, the Journal of Experimental Medicine).

New Drug Triggers Liver Regeneration After Surgery

Investigators have revealed that an innovative complement inhibitor decreases complement-mediated liver cell death, and actually stimulates postsurgery liver regrowth in mice. Liver cancer often results... Read more

Business

view channel

Partnership Established to Decode Bowel Disease

23andMe (Mountain View, CA,USA), a personal genetics company, is collaborating with Pfizer, Inc. (New York, NY, USA), in which the companies will seek to enroll 10,000 people with inflammatory bowel disease (IBD) in a research project designed to explore the genetic factors associated with the onset, progression, severity,... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.