Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC
PURITAN MEDICAL

Novel Solid-State Nanopore System Differentiates Short, Single-Stranded DNA Homopolymers

By BiotechDaily International staff writers
Posted on 06 Jun 2013
Image: Senior author Dr. Marija Drndic (Photo courtesy of the University of Pennsylvania).
Image: Senior author Dr. Marija Drndic (Photo courtesy of the University of Pennsylvania).
Image: Nanopore-based analysis is a single-molecule technique that promises to carry out a range of analyses orders of magnitude faster and more economically than current methods, including length measurement, specific sequence detection, single-molecule dynamics, and ultimately de novo sequencing (Photo courtesy of the University of Pennsylvania).
Image: Nanopore-based analysis is a single-molecule technique that promises to carry out a range of analyses orders of magnitude faster and more economically than current methods, including length measurement, specific sequence detection, single-molecule dynamics, and ultimately de novo sequencing (Photo courtesy of the University of Pennsylvania).
A recent paper described the development of a prototype solid-state nanopore mechanism for the easily reproducible study of the nucleotide bases comprising single DNA molecules.

While biological nanopores have recently demonstrated the ability to resolve single nucleotides within individual DNA molecules, similar developments with solid-state nanopores have lagged, due to challenges both in fabricating stable nanopores of similar dimensions as biological nanopores and in achieving sufficiently low-noise and high-bandwidth recordings. Solid-state nanopore devices, comprising thin solid-state membranes, offer advantages over their biological counterparts in that they can be more easily shipped and integrated with other electronics.

The nanopores concept involves using an applied voltage to drive charged molecules, such as DNA or proteins, through a narrow pore that separates chambers of electrolyte solution. This voltage also drives a flow of electrolyte ions through the pore, measured as an electric current. When molecules pass through the pore, they block the flow of ions, and thus their structure and length can be determined based on the degree and duration of the resulting current reductions.

Investigators at the University of Pennsylvania (Philadelphia, USA; www.upenn.edu) described in the April 26, 2013, online edition of the journal ACS Nano the preparation of small silicon nitride nanopores (0.8–2.0 nm in diameter, in 5.0–8.0 nm-thick membranes). These nanopores could resolve differences between ionic current signals produced by short (30 base) single stranded DNA homopolymers poly(adenine), poly(cytosine), and poly(thymine), when combined with measurement electronics that allowed a signal-to-noise ratio of better than 10 to be achieved at 1-MHz bandwidth.

“While biological nanopores have shown the ability to resolve single nucleotides, solid-state alternatives have lagged due to two challenges of actually manufacturing the right-sized pores and achieving high-signal, low-noise and high-bandwidth measurements,” said senior author Dr. Marija Drndić, associate professor of physics and astronomy at the University of Pennsylvania. “We are attacking those two challenges here.”

“The way we make the nanopores in silicon nitride makes them taper off, so that the effective thickness is about a third of the rest of the membrane,” said Dr. Drndić. “We show that these small pores are sensitive to the base content, and we saw these results in pores with diameters between one and two nanometers, which is actually encouraging because it suggests some manufacturing variability may be okay.”

The investigators acknowledged that identifying intramolecular DNA sequences with silicon nitride nanopores will require further improvements in nanopore sensitivity and noise levels. Nonetheless, the homopolymer differentiation described in the current study represented an important milestone in the development of solid-state nanopores.

Related Links:

University of Pennsylvania



Channels

Genomics/Proteomics

view channel
Image: The photomicrograph shows the head of a mouse embryo in which the pericytes are visible as blue dots along the blood vessel (Photo courtesy of the University of Gothenburg).

Genetically Engineered Mouse Model Reveals Key to Formation of the Blood-Brain Barrier

Use of a mouse model that had been genetically engineered to lack the gene that encodes the forkhead transcription factor Foxf2 has helped to explain how pericytes, cells that line the capillaries, form... Read more

Drug Discovery

view channel
Image: Scanning electron microscope (SEM) image of a field of polypyrrole nanowires (Photo courtesy of Dr. Richard Borgens, Purdue University).

Novel Controlled-Release Drug Delivery System Heals Spinal Inflammation in Mouse Model

A novel drug delivery system that allows controllable release of an anti-inflammatory agent directly to the site of inflammation or injury was tested successfully in a mouse model. Investigators at... Read more

Business

view channel

Biopharm Startup to Commercialize Antibody Therapy for Drug Resistant Cancers

A biopharm startup company has licensed the rights to commercialize an antibody-based approach for treatment of drug resistant cancers. The new company, CadheRx Therapeutics (La Jolla, CA, USA), entered into a licensing agreement with Stony Brook University (NY, USA) to develop and market an anticancer technology derived... Read more
 
Copyright © 2000-2015 Globetech Media. All rights reserved.