Features | Partner Sites | Information | LinkXpress
Sign In
PZ HTL SA
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC

Restorative Gel Could Help Reverse Paralysis

By BiotechDaily International staff writers
Posted on 28 May 2013
A biodegradable implant that delivers a therapeutic gel could help restore healthy nerve function in degenerative disorders such as Parkinson's disease.

Researchers at Tel Aviv University (Israel) developed the implant, which is a soft, biodegradable tube that serves as a physical bridge to help the nerve ends connect. Lining the inside of the biodegradable tube is a guiding regeneration gel (GRG), a transparent, highly viscous, malleable, and adaptable gel that increases nerve growth and healing, helping the severed nerve ends to rejoin. But the GRG not only aids reconnection and cell preservation, it can also support their survival while being used for therapy and transplantation.

The key to the regeneration process lies in the composition of the gel, with three main components: superoxide dismutase (SOD) antioxidants, which exhibit high anti-inflammatory activities; synthetic laminin-derived peptides, which act as a railway or track for the nerve fibers to grow along; and hyaluronic acid, commonly found in the human fetus, which serves as a buffer against drying, a major danger for most implants. These components allow the nerve to heal the way a fetus does in the womb - quickly and smoothly.

Research to-date has shown that GRG stimulates cell growth, neuronal sprouting, and extracellular matrix (ECM) formation, supporting cells in vitro and in vivo upon implantation. It also supports three dimensional (3D) growth and differentiation of various cell types (embryonic, adult stem cells, and preneuronal cells). The implications for therapeutic applications include peripheral nerves reconstruction, cell therapy, corneal preservation, wound healing, and as a postirradiation tissue cavity filler.

“The implant has already been tested in animal models, and the gel by itself can be used as a stand-alone product, acting as an aid to cell therapy,” said GRG codeveloper Shimon Rochkind, MD. “When grown in the gel, cells show excellent development, as well as intensive fiber growth. This could have implications for the treatment of diseases such as Parkinson's.”

Related Links:

Tel Aviv University



comments powered by Disqus

Channels

Genomics/Proteomics

view channel

New Program Encourages Wide Distribution of Genomic Data

A new data sharing program allows genomics researchers and practitioners to analyze, visualize, and share raw sequence data for individual patients or across populations straight from a local browser. The sequencing revolution is providing the raw data required to identify the genetic variants underlying rare diseases... Read more

Drug Discovery

view channel
Image: The nano-cocoon drug delivery system is biocompatible, specifically targets cancer cells, can carry a large drug load, and releases the drugs very quickly once inside the cancer cell. Ligands on the surface of the \"cocoon\" trick cancer cells into consuming it. Enzymes (the “worms\" in this image) inside the cocoon are unleashed once inside the cell, destroying the cocoon and releasing anticancer drugs into the cell (Photo courtesy of Dr. Zhen Gu, North Carolina State University).

Novel Anticancer Drug Delivery System Utilizes DNA-Based Nanocapsules

A novel DNA-based drug delivery system minimizes damage to normal tissues by utilizing the acidic microenvironment inside cancer cells to trigger the directed release of the anticancer drug doxorubicin (DOX).... Read more

Lab Technologies

view channel

Experimental Physicists Find Clues into How Radiotherapy Kills Cancer Cells

A new discovery in experimental physics has implications for a better determination of the process in which radiotherapy destroys cancer cells. Dr. Jason Greenwood from Queen’s University Belfast (Ireland) Center for Plasma Physics collaborated with scientists from Italy and Spain on the work on electrons, and published... Read more

Business

view channel

Interest in Commercial Applications for Proteomics Continues to Grow

Increasing interest in the field of proteomics has led to a series of agreements between private proteomic companies and academic institutions as well as deals between pharmaceutical companies and novel proteomics innovator biotech companies. Proteomics is the study of the structure and function of proteins.... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.