Features Partner Sites Information LinkXpress
Sign In
Demo Company

New Kit with Novel Method Improves Microbiome DNA Enrichment

By BiotechDaily International staff writers
Posted on 22 May 2013
Print article
A new kit has been developed to enrich microbial genomic DNA to enable more feasible and affordable microbiome next generation DNA sequencing.

New England Biolabs (NEB; Ipswich, MA, USA) introduces the “NEBNext Microbiome DNA Enrichment Kit,” which uses a method designed to separate microbial DNA from host DNA, reducing the high cost of sequencing microbiome DNA to a more practical level. Microbiome samples are commonly dominated by host DNA (up to 99%), complicating genetic analyses of these samples, particularly total microbiome DNA sequencing studies. Since only a small percentage of sequencing reads pertain to the microbes of interest, obtaining sufficient sequence coverage of the microbiome DNA can become cost-prohibitive or even technically infeasible.

The new kit utilizes the MBD2-Fc protein, which binds to CpG-methylated DNA (including human genomic DNA) with very high specificity. The MDB2-Fc protein is attached to Protein A-coated magnetic beads, enabling simple and quick removal of the contaminating host DNA in about 30 minutes. The microbial DNA-enriched sample is then ready to be processed for multiple downstream applications, including next generation sequencing, qPCR, and endpoint PCR.

“Although microbiome whole genome sequencing provides more information than other methods, such as 16S analysis, this method has proven difficult for many samples, due to the presence of contaminating host genomic DNA,” said Fiona Stewart, Product Marketing Manager, Next Generation Sequencing at NEB. “The NEBNext Microbiome DNA Enrichment Kit makes it possible to substantially enrich samples for nonhost, microbial DNA, while retaining microbial diversity, thereby improving the quality and cost-effectiveness of downstream analyses.”

Related Links:

New England Biolabs
NEBNext Microbiome DNA Enrichment Kit

Print article



view channel

Novel Molecular Signaling Pathway Inhibits Lung Cancer Growth and Metastasis

A gene that had not been linked previously to lung cancer was found to be a critical component of a novel molecular signaling pathway that restricts lung cancer progression and metastasis. Investigators at Northwestern University (Evanston, IL, USA) based the current study on emerging evidence that the neuronal guidance... Read more


view channel

Purchase of Biopharmaceutical Company Will Boost Development of Nitroxyl-Based Cardiovascular Disease Drugs

A major international biopharmaceutical company has announced the acquisition of a private biotech company that specializes in the development of drugs for treatment of cardiovascular disease. Bristol-Myers Squibb Co. (New York, NY, USA) has initiated the process to buy Cardioxyl Pharmaceuticals Inc. (Chapel Hill, NC, USA).... Read more
Copyright © 2000-2015 Globetech Media. All rights reserved.