Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH MEDIA
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC

New Imaging Technology Could Reveal Cellular Mysteries

By BiotechDaily International staff writers
Posted on 21 May 2013
Researchers have fused two biologic imaging technologies, creating a new approach to determine how healthy cells turn malignant.

“Let’s say you have a large population of cells,” said Dr. Corey Neu, an assistant professor in Purdue University’s (West Lafayette, IN, USA) Weldon School of Biomedical Engineering. “Just one of them might metastasize or proliferate, forming a cancerous tumor. We need to understand what it is that gives rise to that one bad cell.”

This new development makes it possible to simultaneously evaluate the mechanical and biochemical characteristics of cells, which could provide new clues into disease processes, according to biomedical engineering postdoctoral fellow Charilaos Mousoulis. Being able to study a cell’s internal mechanisms in precise detail would in all probably provide insights into the physical and biochemical responses to its environment. The technology, which combines an atomic force microscope and nuclear magnetic resonance system (MRI), could help researchers study individual cancer cells, for example, to uncover mechanisms leading up to cancer metastasis for research and diagnostics.

The prototype’s capabilities were demonstrated by taking nuclear magnetic resonance spectra of hydrogen atoms in water. Findings represent a proof of concept of the technology and were published in a research paper that appeared online April 11, 2013, in the journal Applied Physics Letters. “You could detect many different types of chemical elements, but in this case hydrogen is nice to detect because it’s abundant,” Dr. Neu said. “You could detect carbon, nitrogen and other elements to get more detailed information about specific biochemistry inside a cell.”

An atomic force microscope (AFM) uses a tiny vibrating probe called a cantilever to provide data about substances and surfaces on the scale of nanometers (billionths of a meter). Because the instrument enables scientists to visualize objects far smaller than possible using light microscopes, it could be suitable for studying molecules, cell membranes and other biologic structures.

However, the AFM does not provide information about the chemical and biologic properties of cells. Therefore, the researchers constructed a metal microcoil on the AFM cantilever. An electrical current is passed though the coil, causing it to exchange electromagnetic radiation with protons in molecules within the cell and inducing another current in the coil, which is detected.

The Purdue researchers performed “mechanobiology” experiments to find out how forces exerted on cells influence their behavior. In work focusing on osteoarthritis, their research includes the study of cartilage cells from the knee to determine how they interact with the complex matrix of structures and biochemistry between cells.

Future research might include studying cells in microfluidic chambers to assess how they respond to specific drugs and environmental changes. A US patent application has been filed for the concept.

Related Links:
Purdue University



WATERS CORPORATION

Channels

Genomics/Proteomics

view channel
Image: Mosquitoes are known to infect people and animals with West Nile virus. Studying West Nile virus infection in mice, researchers have shown that the antiviral compound interferon-lambda tightens the blood-brain barrier, making it harder for the virus to invade the brain (Photo courtesy of the CDC – [US] Centers for Disease Control and Prevention).

Interferon-Lambda Prevents West Nile Virus from Crossing the Blood-brain Barrier

The cytokine interferon-lambda prevents West Nile virus from infecting brain cells by reducing transport of large molecules across the blood-brain barrier. Although interferon-lambda [also known as... Read more

Drug Discovery

view channel
Image: Star-like glial cells in red surround alpha-beta plaques in the cortex of a mouse with a model of Alzheimer\'s disease (Photo courtesy of Strittmatter laboratory/Yale University).

Experimental Cancer Drug Reverses Symptoms in Mouse Model of Alzheimer's Disease

An experimental, but clinically disappointing drug for treatment of cancer has been found to be extremely effective in reversing the symptoms of Alzheimer's disease (AD) in a mouse model.... Read more

Business

view channel

NanoString and MD Anderson Collaborate on Development of Novel Multi-Omic Expression Profiling Assays for Cancer

The University of Texas MD Anderson Cancer Center (Houston, TX, USA) and NanoString Technologies, Inc. (Seattle, WA, USA) will partner on development of a revolutionary new type of assay—simultaneously profiling gene and protein expression, initially aiming to discover and validate biomarker signatures for immuno-oncology... Read more
 

Events

27 May 2015 - 28 May 2015
02 Jun 2015 - 03 Jun 2015
15 Jun 2015 - 18 Jun 2015
Copyright © 2000-2015 Globetech Media. All rights reserved.