Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Events

06 Jun 2016 - 09 Jun 2016
22 Jun 2016 - 24 Jun 2016
04 Jul 2016 - 06 Jul 2016

New Imaging Technology Could Reveal Cellular Mysteries

By BiotechDaily International staff writers
Posted on 21 May 2013
Print article
Researchers have fused two biologic imaging technologies, creating a new approach to determine how healthy cells turn malignant.

“Let’s say you have a large population of cells,” said Dr. Corey Neu, an assistant professor in Purdue University’s (West Lafayette, IN, USA) Weldon School of Biomedical Engineering. “Just one of them might metastasize or proliferate, forming a cancerous tumor. We need to understand what it is that gives rise to that one bad cell.”

This new development makes it possible to simultaneously evaluate the mechanical and biochemical characteristics of cells, which could provide new clues into disease processes, according to biomedical engineering postdoctoral fellow Charilaos Mousoulis. Being able to study a cell’s internal mechanisms in precise detail would in all probably provide insights into the physical and biochemical responses to its environment. The technology, which combines an atomic force microscope and nuclear magnetic resonance system (MRI), could help researchers study individual cancer cells, for example, to uncover mechanisms leading up to cancer metastasis for research and diagnostics.

The prototype’s capabilities were demonstrated by taking nuclear magnetic resonance spectra of hydrogen atoms in water. Findings represent a proof of concept of the technology and were published in a research paper that appeared online April 11, 2013, in the journal Applied Physics Letters. “You could detect many different types of chemical elements, but in this case hydrogen is nice to detect because it’s abundant,” Dr. Neu said. “You could detect carbon, nitrogen and other elements to get more detailed information about specific biochemistry inside a cell.”

An atomic force microscope (AFM) uses a tiny vibrating probe called a cantilever to provide data about substances and surfaces on the scale of nanometers (billionths of a meter). Because the instrument enables scientists to visualize objects far smaller than possible using light microscopes, it could be suitable for studying molecules, cell membranes and other biologic structures.

However, the AFM does not provide information about the chemical and biologic properties of cells. Therefore, the researchers constructed a metal microcoil on the AFM cantilever. An electrical current is passed though the coil, causing it to exchange electromagnetic radiation with protons in molecules within the cell and inducing another current in the coil, which is detected.

The Purdue researchers performed “mechanobiology” experiments to find out how forces exerted on cells influence their behavior. In work focusing on osteoarthritis, their research includes the study of cartilage cells from the knee to determine how they interact with the complex matrix of structures and biochemistry between cells.

Future research might include studying cells in microfluidic chambers to assess how they respond to specific drugs and environmental changes. A US patent application has been filed for the concept.

Related Links:
Purdue University



Print article

Channels

Genomics/Proteomics

view channel
Image: Follicular helper T-cells (TFH cells, shown in blue) play a crucial role in the maturation of antibody-producing B-cells (shown in green). Activated B-cells give rise germinal centers (shown in red), where mature B-cells proliferate and produce highly specific antibodies against pathogens. Top left: normal germinal center in a mouse tonsil. All others: Germinal centers fail to form when the interaction between ICOS and TBK1 is interrupted (Photo courtesy of Dr. Kok-Fai Kong, La Jolla Institute for Allergy and Immunology).

Molecular Pathway Controlling High-affinity Antibody Production Identified

A molecular pathway has been identified that controls formation of follicular helper T-cells (TFH cells) germinal centers and production of high-affinity antibodies through interaction with the inducible... Read more

Drug Discovery

view channel

Experimental Small-Molecule Anticancer Drug Blocks RAS-binding Domains

The experimental small-molecule anticancer drug rigosertib was shown to block tumor growth by acting as an RAS-mimetic and interacting with the RAS binding domains of RAF kinases, resulting in their inability to bind to RAS, which inhibited the RAS-RAF-MEK pathway. Oncogenic activation of RAS genes due to point mutations... Read more

Biochemistry

view channel
Image: A space-filling model of the anticonvulsant drug carbamazepine (Photo courtesy of Wikimedia Commons).

Wastewater May Contaminate Crops with Potentially Dangerous Pharmaceuticals

Reclaimed wastewater used to irrigate crops is contaminated with pharmaceutical residues that can be detected in the urine of those who consumed such produce. Investigators at the Hebrew University... Read more

Business

view channel

European Biotech Agreement to Promote Antigen-Drug Conjugation Technology

Two European biotech companies have joined forces to exploit and commercialize an innovative, site-specific ADC (antigen-drug conjugate) conjugation technology. ProBioGen (Berlin, Germany), a company specializing in the development and manufacture of complex glycoproteins and Eucodis Bioscience (Vienna, Austria), a... Read more
Copyright © 2000-2016 Globetech Media. All rights reserved.