Features | Partner Sites | Information | LinkXpress
Sign In
PZ HTL SA
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC

New Imaging Technology Could Reveal Cellular Mysteries

By BiotechDaily International staff writers
Posted on 21 May 2013
Researchers have fused two biologic imaging technologies, creating a new approach to determine how healthy cells turn malignant.

“Let’s say you have a large population of cells,” said Dr. Corey Neu, an assistant professor in Purdue University’s (West Lafayette, IN, USA) Weldon School of Biomedical Engineering. “Just one of them might metastasize or proliferate, forming a cancerous tumor. We need to understand what it is that gives rise to that one bad cell.”

This new development makes it possible to simultaneously evaluate the mechanical and biochemical characteristics of cells, which could provide new clues into disease processes, according to biomedical engineering postdoctoral fellow Charilaos Mousoulis. Being able to study a cell’s internal mechanisms in precise detail would in all probably provide insights into the physical and biochemical responses to its environment. The technology, which combines an atomic force microscope and nuclear magnetic resonance system (MRI), could help researchers study individual cancer cells, for example, to uncover mechanisms leading up to cancer metastasis for research and diagnostics.

The prototype’s capabilities were demonstrated by taking nuclear magnetic resonance spectra of hydrogen atoms in water. Findings represent a proof of concept of the technology and were published in a research paper that appeared online April 11, 2013, in the journal Applied Physics Letters. “You could detect many different types of chemical elements, but in this case hydrogen is nice to detect because it’s abundant,” Dr. Neu said. “You could detect carbon, nitrogen and other elements to get more detailed information about specific biochemistry inside a cell.”

An atomic force microscope (AFM) uses a tiny vibrating probe called a cantilever to provide data about substances and surfaces on the scale of nanometers (billionths of a meter). Because the instrument enables scientists to visualize objects far smaller than possible using light microscopes, it could be suitable for studying molecules, cell membranes and other biologic structures.

However, the AFM does not provide information about the chemical and biologic properties of cells. Therefore, the researchers constructed a metal microcoil on the AFM cantilever. An electrical current is passed though the coil, causing it to exchange electromagnetic radiation with protons in molecules within the cell and inducing another current in the coil, which is detected.

The Purdue researchers performed “mechanobiology” experiments to find out how forces exerted on cells influence their behavior. In work focusing on osteoarthritis, their research includes the study of cartilage cells from the knee to determine how they interact with the complex matrix of structures and biochemistry between cells.

Future research might include studying cells in microfluidic chambers to assess how they respond to specific drugs and environmental changes. A US patent application has been filed for the concept.

Related Links:
Purdue University



SLAS - Society for Laboratory Automation and Screening
BIOSIGMA S.R.L.
RANDOX LABORATORIES
comments powered by Disqus

Channels

Genomics/Proteomics

view channel
Image: A 3-dimensional picture reveals how the antibodies in the experimental drug Zmapp bind to Ebola virus (Photo courtesy of the Scripps Research Institute).

Electron Microscope Imaging Shows How Experimental Anti-Ebola Drug Works

Electron microscope imaging has revealed how the experimental drug ZMapp binds to the Ebolavirus and provides insights into how the drug prevents growth of the pathogen. ZMapp, which was developed by... Read more

Drug Discovery

view channel

Omega 3 Found to Improve Behavior in Children with ADHD

Supplements of the fatty acids omega 3 and 6 can help children and adolescents who have a specific kind of have attention deficit hyperactivity disorder (ADHD). Moreover, these findings indicate that a customized cognitive training program can improve problem behavior in children with ADHD. Statistics show that 3%–6%... Read more

Biochemistry

view channel

Blocking Enzyme Switch Turns Off Tumor Growth in T-Cell Acute Lymphoblastic Leukemia

Researchers recently reported that blocking the action of an enzyme “switch” needed to activate tumor growth is emerging as a practical strategy for treating T-cell acute lymphoblastic leukemia. An estimated 25% of the 500 US adolescents and young adults diagnosed yearly with this aggressive disease fail to respond to... Read more

Business

view channel

Two Industry Partnerships Initiated to Fuel Neuroscience Research

Faster, more complex neural research is now attainable by combining technology from two research companies. Blackrock Microsystems, LLC (Salt Lake City, UT, USA), a developer of neuroscience research equipment, announced partnerships with two neuroscience research firms—PhenoSys, GmbH (Berlin, Germany) and NAN Instruments, Ltd.... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.