Features | Partner Sites | Information | LinkXpress
Sign In
JIB
BioConferenceLive
GLOBETECH PUBLISHING

Full Genetic DNA Data Available in Minutes

By BiotechDaily International staff writers
Posted on 20 May 2013
Image: Close-up view of the microtip probes of the device (Photo courtesy of NanoFacture).
Image: Close-up view of the microtip probes of the device (Photo courtesy of NanoFacture).
A new device can extract human DNA from a swab of saliva, providing full analysis and genome sequencing data within minutes.

Developed by researchers at the University of Washington (UW, Seattle, WA, USA) and NanoFacture (Bellevue, WA, USA), the new device uses microscopic probes that dip into a fluid sample—saliva, sputum, or blood—and apply an electric field within the liquid that attracts particles to concentrate around the surface of the probe. Larger particles hit the tip and swerve away, but DNA-sized molecules stick to the probe and are trapped on the surface via capillary action. It takes two or three minutes to separate and purify DNA using this technology.

The hand-held device can clean four separate human fluid samples at once, but the technology can be scaled up to prepare 96 samples at a time, which is standard for large-scale handling. Engineers at the University of Washington, which developed the technology, have also designed a pencil-sized device using the same probe technology that could be sent home with patients or distributed to those serving in the military overseas. Patients could swab their cheeks, collect a saliva sample, and process their DNA on the spot to send back to hospitals and labs for analysis.

“It’s very complex to extract DNA,” said lead researcher Jae-Hyun Chung, PhD, an associate professor of mechanical engineering at UW. “When you think of the current procedure, the equivalent is like collecting human hairs using a construction crane.”

Conventional methods use a centrifuge to spin and separate DNA molecules or strain them from a fluid sample with a micro-filter, but these processes take 20 to 30 minutes to complete and can require excessive toxic chemicals. The new device will give hospitals and research labs an easier way to separate DNA from human fluid samples, which will help with genome sequencing, disease diagnosis, and forensic investigations.

Related Links:

University of Washington
NanoFacture



comments powered by Disqus

Channels

Genomics/Proteomics

view channel
Image: Blocking the activity of HSP101 may imprison the malaria parasite inside its protective vacuole within the red blood cell. In the electron micrograph, the malaria parasites appear in blue and uninfected red blood cells are shown in red (Photo courtesy of the [US] National Institute of Allergy and Infectious Diseases).

Heat Shock Protein Plays Critical Role in Malaria Parasite Protein Trafficking

A pair of recent papers described the molecular operators that enable the malaria parasite Plasmodium falciparum to export a large variety of proteins across the parasitophorous vacuolar membrane (PVM)... Read more

Drug Discovery

view channel
Image: Molecular rendering of the crystal structure of parkin (Photo courtesy of Wikimedia Commons).

Cinnamon Feeding Blocks Development of Parkinson's Disease in Mouse Model

A team of neurological researchers has identified a molecular mechanism by which cinnamon acts to protect neurons from damage caused by Parkinson's disease (PD) in a mouse model of the syndrome.... Read more

Therapeutics

view channel

Vaccine Being Developed for Heart Disease Close to Reality

The world’s first vaccine for heart disease is becoming a possibility with researchers demonstrating significant arterial plaque reduction in concept testing in mice. Klaus Ley, MD, from the La Jolla Institute for Allergy and Immunology (LA Jolla, CA, USA), and a vascular immunology specialist, is leading the vaccine... Read more

Business

view channel

A Surge in IPOs Revitalize Investments for the Global Pharma and Biotech

Anti-infective drugs, oncology, and pharmaceutical contract laboratories attract the most investment up to now. The intensified private equity and venture capital (PEVC) deal activity in the global healthcare industry during the recession years, 2008–2010, witnessed a waning post-2010. However, the decline in deals... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.