Features | Partner Sites | Information | LinkXpress
Sign In
PZ HTL SA
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC

Untethered Microgrippers Sample Biologic Tissue

By BiotechDaily International staff writers
Posted on 13 May 2013
Image: A single μ-gripper next to a catheter (Photo courtesy of Johns Hopkins University).
Image: A single μ-gripper next to a catheter (Photo courtesy of Johns Hopkins University).
A new study describes thermally activated microgrippers that can reach narrow conduits in the body and be used to excise tissue for diagnostic analyses and biopsies.

Researchers at Johns Hopkins University (JHU; Baltimore, MD, USA) designed the submillimeter endoscopic microgrippers (μ-grippers) to resemble biological appendages, such as hands, with rigid phalanges and flexible joints. The residual stress powered actuators allow them to close and grasp without the need for tethers, while the rigid phalanges of the μ-grippers are composed of nickel, and hence, respond to an applied magnetic field. A thermo-sensitive polymer trigger layer on the joints keeps the μ-grippers flat at 4 °C, but softens at 37 °C, causing the μ-grippers to close.

The μ-grippers are small enough that hundreds can be deployed at a time and actuated en masse, and could therefore form the basis for a more statistically efficient means to screen large surface area organs such as the colon. To test the feasibility of biologic tissue sampling with μ-grippers, the researchers used a swine colon in ex vivo studies. They uniformly spread hundreds of μ-grippers by rotating the endoscope during the deployment. The arms of each millimeter-long μ-gripper is composed of chromium and gold actuators that naturally want to bend inwards, but are held back by the thin layer of polymer coating.

To simulate the normal human temperature, the colon was submerged in a water bath kept at 37 °C, whereupon the coating dissolved and the talons snatched up cells at close proximity; the researchers then visually verified the closure of the μ-grippers using endoscopic imaging. After closure, the vast majority of μ-grippers were retrieved using a magnetic catheter inserted through the endoscope. The researchers found that the μ-grippers identified the lesion 45% of the time; when the swarm was boosted up to 1,500 μ-grippers, the efficiency rose to 95%. The study was published in the April 2013 issue of Gastroenterology.

“Our results suggest a new paradigm in medicine whereby large numbers of small, tether-free microsurgical tools could complement individual, large, tethered biopsying devices,” concluded lead author Evin Gultepe, PhD, and colleagues of the department of chemical and biomolecular engineering. “The tissue retrieved by the μ-grippers is of sufficient quality and quantity to allow DNA and RNA extraction, as well as polymerase chain reaction (PCR) amplification in an effort to look for previously identified disease-diagnostic markers.”

Related Links:

Johns Hopkins University



comments powered by Disqus

Channels

Genomics/Proteomics

view channel
Image: This novel, flexible film that can react to light is a promising step toward an artificial retina (Photo courtesy of the American Chemical Society).

Novel Nanofilm May Be Artificial Retina Precursor

Researchers have used advanced nanotechnology techniques to develop a light-sensitive film that has potential for future artificial retina applications. Investigators at the Hebrew University of Jerusalem... Read more

Drug Discovery

view channel
Image: Disruption and removal of malaria parasites by the experimental drug (+)-SJ733 (Photo courtesy of the University of California, San Francisco).

Experimental Antimalaria Drug Induces the Immune System to Destroy Infected Red Blood Cells

An experimental drug for the treatment of malaria was found to induce morphological changes in infected erythrocytes that enabled the immune system to recognize and eliminate them. Investigators at... Read more

Biochemistry

view channel

Blocking Enzyme Switch Turns Off Tumor Growth in T-Cell Acute Lymphoblastic Leukemia

Researchers recently reported that blocking the action of an enzyme “switch” needed to activate tumor growth is emerging as a practical strategy for treating T-cell acute lymphoblastic leukemia. An estimated 25% of the 500 US adolescents and young adults diagnosed yearly with this aggressive disease fail to respond to... Read more

Business

view channel

R&D Partnership Initiated to Reduce Development Time for New Drugs

nanoPET Pharma, GmbH (Berlin, Germany) signed an open-ended framework contract with the international pharmaceutical company Boehringer Ingelheim (Ridgefield, CT, USA). By developing customized contrast agents for research in both basic and preclinical studies, nanoPET Pharma will contribute to the enhancement of Boehringer... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.