Features | Partner Sites | Information | LinkXpress
Sign In
JIB
BioConferenceLive
GLOBETECH PUBLISHING

Untethered Microgrippers Sample Biologic Tissue

By BiotechDaily International staff writers
Posted on 13 May 2013
Image: A single μ-gripper next to a catheter (Photo courtesy of Johns Hopkins University).
Image: A single μ-gripper next to a catheter (Photo courtesy of Johns Hopkins University).
A new study describes thermally activated microgrippers that can reach narrow conduits in the body and be used to excise tissue for diagnostic analyses and biopsies.

Researchers at Johns Hopkins University (JHU; Baltimore, MD, USA) designed the submillimeter endoscopic microgrippers (μ-grippers) to resemble biological appendages, such as hands, with rigid phalanges and flexible joints. The residual stress powered actuators allow them to close and grasp without the need for tethers, while the rigid phalanges of the μ-grippers are composed of nickel, and hence, respond to an applied magnetic field. A thermo-sensitive polymer trigger layer on the joints keeps the μ-grippers flat at 4 °C, but softens at 37 °C, causing the μ-grippers to close.

The μ-grippers are small enough that hundreds can be deployed at a time and actuated en masse, and could therefore form the basis for a more statistically efficient means to screen large surface area organs such as the colon. To test the feasibility of biologic tissue sampling with μ-grippers, the researchers used a swine colon in ex vivo studies. They uniformly spread hundreds of μ-grippers by rotating the endoscope during the deployment. The arms of each millimeter-long μ-gripper is composed of chromium and gold actuators that naturally want to bend inwards, but are held back by the thin layer of polymer coating.

To simulate the normal human temperature, the colon was submerged in a water bath kept at 37 °C, whereupon the coating dissolved and the talons snatched up cells at close proximity; the researchers then visually verified the closure of the μ-grippers using endoscopic imaging. After closure, the vast majority of μ-grippers were retrieved using a magnetic catheter inserted through the endoscope. The researchers found that the μ-grippers identified the lesion 45% of the time; when the swarm was boosted up to 1,500 μ-grippers, the efficiency rose to 95%. The study was published in the April 2013 issue of Gastroenterology.

“Our results suggest a new paradigm in medicine whereby large numbers of small, tether-free microsurgical tools could complement individual, large, tethered biopsying devices,” concluded lead author Evin Gultepe, PhD, and colleagues of the department of chemical and biomolecular engineering. “The tissue retrieved by the μ-grippers is of sufficient quality and quantity to allow DNA and RNA extraction, as well as polymerase chain reaction (PCR) amplification in an effort to look for previously identified disease-diagnostic markers.”

Related Links:

Johns Hopkins University



comments powered by Disqus

Channels

Genomics/Proteomics

view channel
Image: In the liver tissue of obese animals with type II diabetes, unhealthy, fat-filled cells are prolific (small white cells, panel A). After chronic treatment through FGF1 injections, the liver cells successfully lose fat and absorb sugar from the bloodstream (small purple cells, panel B) and more closely resemble cells of normal, non-diabetic animals (Photo courtesy of the Salk Institute for Biological Studies).

Fibroblast Growth Factor 1 Treatment Restores Glucose Control in Mouse Diabetes Model

A "vaccine" based on the metabolic regulator fibroblast growth factor 1 (FGF1) removed the insulin resistance that characterizes type II diabetes and restored the body's natural ability to manage its glucose... Read more

Drug Discovery

view channel
Image: Molecular rendering of the crystal structure of parkin (Photo courtesy of Wikimedia Commons).

Cinnamon Feeding Blocks Development of Parkinson's Disease in Mouse Model

A team of neurological researchers has identified a molecular mechanism by which cinnamon acts to protect neurons from damage caused by Parkinson's disease (PD) in a mouse model of the syndrome.... Read more

Therapeutics

view channel
Image: This type of electronic pacemaker could become obsolete if induction of biological pacemaker cells by gene therapy proves successful (Photo courtesy of Wikimedia Commons).

Gene Therapy Induces Functional Pacemaker Cells in Pig Heart Failure Model

Cardiovascular disease researchers working with a porcine heart failure model have demonstrated the practicality of using gene therapy to replace implanted electronic pacemakers to regulate heartbeat.... Read more

Lab Technologies

view channel

Precise Ion Irradiation Dosing Method Developed for Cancer Therapy

Scientists are employing nuclear physics principles to provide more effective approaches to radiotherapy treatment for cancer patients. Radiation therapy using heavy ions is best suitable for cancer patients with tumors that are difficult to access, such as in the brain. These particles scarcely damage the penetrated... Read more

Business

view channel

Cancer Immunotherapy Sector Predicted to Surge to USD 9 Billion Across Major Pharma Through 2022

The immunotherapy market will experience substantial growth through 2022, increasing from USD 1.1 billion in 2012 to nearly USD 9 billion in 2022 (corresponding to 23.8% annual growth) in the United Kingdom, United States, France, Germany, Italy, Spain, and Japan, according to recent market research. This notable growth... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.