Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING LLC
PZ HTL SA
GLOBETECH PUBLISHING LLC

Novel Microscope Enables Direct Mass Spectrometry Analysis

By BiotechDaily International staff writers
Posted on 07 May 2013
Image: The iMScope –  Shimadzu’s novel imaging mass microscope (Photo courtesy of Shimadzu).
Image: The iMScope – Shimadzu’s novel imaging mass microscope (Photo courtesy of Shimadzu).
A unique imaging mass microscope has been developed as a new research tool that offers mass spectrometric analysis capability in a single instrument and resolution enabling the visualization of the sub-cellular distribution of molecules.

The positional information of molecules is lost in traditional mass spectrometric analysis. Shimadzu Corporation (Kyoto, Japan) introduces the “iMScope” imaging mass microscope, a new hybrid type of microscope that combines both an optical microscope and an atmospheric pressure ionization mass spectrometer. The optical microscope allows the observation of high-resolution morphological images, and the hybrid ion trap time of flight mass spectrometer allows both identification and visualization of the distribution of specific molecules in the sectioned sample of interest. In addition, the relative abundance of specific molecules (such as drugs and their metabolites) localized in different tissues can be resolved and compared. The dedicated software for the iMScope, “Imaging MS Solution,” can set all operational parameters for viewing optical microscope images, and many sets of operation parameters are available as default method files; hence, users can perform the imaging mass spectrometry without troublesome additional settings.

Proprietary ultrafocusing laser optics and the highly reproducible, high precision 3D automated sample transfer stage result in a superior spatial mass spectrometry resolution of 5 µm—finest spatial resolution in imaging mass spectrometry, using matrix assisted laser desorption ionization (MALDI-TOF) mass spectrometer, commercially available. The iMScope is capable of analyzing living cells or tissue samples by atmosphere MALDI. By superimposing the two images obtained based on these different principles, the team of scientists from Shimadzu, Hamamatsu University of Medicine, and Keio University have created this powerful new research tool.

The iMScope expands potential research opportunities to a diversity of fields, including direct analyses of biological samples as well as of manufactured devices. Potential biological applications include disease biomarker research and functional biology research, such as for development of early stage cancer indicators with biomarkers in cancer tissue; for analysis of micro tissue (smaller than 10 µm; e.g., pigment layer of the retina); as a new pharmacokinetics tool monitoring drug metabolism; and for advancing agricultural and horticultural products via locating the distribution of key compounds. The iMScope is also well suited for various industrial applications, particularly for defect analysis of electronic components and synthetic polymer materials.

In addition to enabling direct analysis of optical microscope samples, the use of atmosphere MALDI, compared to vacuum MALDI, enables analysis of volatile molecules and biological tissues closer living conditions, as well as shorter instrument start-up time. Additionally, the high speed Nd:YAG laser can ionize molecules at 1 kHz, and original ion optics can acquire the ions (which are ionized by several laser shots) and analyze those at once, as this novel technology provides about 100 times faster high-speed imaging mass spectrometry than conventional mass spectrometers. Hence, the ultra-fast performance of the iMScope also accelerates research progress.

The iMScope will be presented at both KSBMB 2013, Korean Society of Biochemistry and Molecular Biology (May 14-16, 2013) and ASMS 2013, American Society of Mass Spectrometry (June 9-13, 2013, in Minneapolis, MN, USA), in conjunction with the new iMLayer, matrix sample preparation device for tissue imaging.

Related Links:
Shimadzu
iMScope


RANDOX LABORATORIES
SLAS - Society for Laboratory Automation and Screening
BIOSIGMA S.R.L.
comments powered by Disqus

Channels

Genomics/Proteomics

view channel
Image: A 3-dimensional picture reveals how the antibodies in the experimental drug Zmapp bind to Ebola virus (Photo courtesy of the Scripps Research Institute).

Electron Microscope Imaging Shows How Experimental Anti-Ebola Drug Works

Electron microscope imaging has revealed how the experimental drug ZMapp binds to the Ebolavirus and provides insights into how the drug prevents growth of the pathogen. ZMapp, which was developed by... Read more

Drug Discovery

view channel

Omega 3 Found to Improve Behavior in Children with ADHD

Supplements of the fatty acids omega 3 and 6 can help children and adolescents who have a specific kind of have attention deficit hyperactivity disorder (ADHD). Moreover, these findings indicate that a customized cognitive training program can improve problem behavior in children with ADHD. Statistics show that 3%–6%... Read more

Biochemistry

view channel

Blocking Enzyme Switch Turns Off Tumor Growth in T-Cell Acute Lymphoblastic Leukemia

Researchers recently reported that blocking the action of an enzyme “switch” needed to activate tumor growth is emerging as a practical strategy for treating T-cell acute lymphoblastic leukemia. An estimated 25% of the 500 US adolescents and young adults diagnosed yearly with this aggressive disease fail to respond to... Read more

Business

view channel

Two Industry Partnerships Initiated to Fuel Neuroscience Research

Faster, more complex neural research is now attainable by combining technology from two research companies. Blackrock Microsystems, LLC (Salt Lake City, UT, USA), a developer of neuroscience research equipment, announced partnerships with two neuroscience research firms—PhenoSys, GmbH (Berlin, Germany) and NAN Instruments, Ltd.... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.