Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING
GLOBETECH PUBLISHING
JIB

New Camera Enables High Resolution Video Recording at Ultrahigh Speeds

By BiotechDaily International staff writers
Posted on 07 May 2013
Image: Shimadzu’s Hyper Vision HPV-X high-speed video camera (Photo courtesy of Shimadzu).
Image: Shimadzu’s Hyper Vision HPV-X high-speed video camera (Photo courtesy of Shimadzu).
A new video camera has been developed with specialized sensor technology that enables the achievement of record ultrahigh-speed continuous recording of high-resolution images.

High-speed video technology has been used as an important analysis tool in a variety of fields including microbiological and other microscopic phenomena, materials failure, explosions, and electric discharge. Shimadzu (Nakagyo-ku; Kyoto, Japan) now introduces the Hyper Vision HPV-X video camera, which allows observation of previously unobservable ultrahigh-speed phenomena with high temporal resolution. The camera is applicable to a broad range of fields requiring high-speed video, such as research in advanced science, engineering and medicine, space technology development, product development, and identification of causes of defects.

The HPV-X offers a choice of two modes of image resolution: “full pixel” (FP) for 100,000 pixel images and “half pixel” (HP) for 50,000 pixel images. It is also equipped with a newly developed proprietary high-speed FT-CMOS image sensor and has achieved ultrahigh-speed continuous recording at 10 million frames/second, a world's first, opening new doorways to high-speed recording. This feature is included in all Shimadzu’s Hyper Vision high-speed video cameras, but is not available from any other manufacturer. The HPV-X can record 5 million 100,000 pixel images per second (in FP mode) or 10 million 50,000 pixel images per second (in HP mode).

Recording storage capacity has been increased by increasing memory capacity and the higher frame capacity allows longer recording times. In FP resolution mode, the HPV-X can record 128 frames, which is 20% more than the previous HPV-2 model. In the HP mode, a double-memory function enables recording 256 consecutive frames for recording even longer periods. This gives the user the choice to prioritize either resolution or recording time. Near instantaneous phenomena can now be captured in even more detail: with conventional high-speed video cameras, the resolution drops as recording speed is increased, whereas with the HPV-X, recording can be performed at the maximum resolution of 400 × 250 pixels (in FP mode) regardless of the recording speed used, enabling detailed analysis of ultrahigh-speed phenomena.

Just like the previous model, the simple system configuration offers a compact and highly portable design that makes on-site setup especially simple. The HPV-X camera head just has to be connected to a laptop computer by cable. The camera also retains the same HPV software that has been so popular with users of the previous model, with intuitive features and easy-to-understand setting screens.

Related Links:
Shimadzu



comments powered by Disqus

Channels

Drug Discovery

view channel
Image: The European Commission has approved the use of Avastin combined with chemotherapy as a treatment for women with recurrent ovarian cancer (Photo courtesy of Genentech).

Drug for Treatment of Platinum Resistant Recurrent Ovarian Cancer Approved for Use in Europe

For the first time in more than 15 years the European Commission (EC) has approved a new therapeutic option for the most difficult to treat form of ovarian cancer. Ovarian cancer causes more deaths... Read more

Therapeutics

view channel
Image: This type of electronic pacemaker could become obsolete if induction of biological pacemaker cells by gene therapy proves successful (Photo courtesy of Wikimedia Commons).

Gene Therapy Induces Functional Pacemaker Cells in Pig Heart Failure Model

Cardiovascular disease researchers working with a porcine heart failure model have demonstrated the practicality of using gene therapy to replace implanted electronic pacemakers to regulate heartbeat.... Read more

Business

view channel

Global Computational Biology Sector Expected to Reach over USD 4 Billion by 2020

The global market for computational biology is expected to reach USD 4.285 billion by 2020 growing at a compound annual growth rate (CAGR) of 21.1%, according to new market research. Steady surge in the usage and application of computational biology for bioinformatics R&D programs designed for sequencing genomes... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.