Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC
GLOBETECH MEDIA

New Camera Enables High Resolution Video Recording at Ultrahigh Speeds

By BiotechDaily International staff writers
Posted on 07 May 2013
Image: Shimadzu’s Hyper Vision HPV-X high-speed video camera (Photo courtesy of Shimadzu).
Image: Shimadzu’s Hyper Vision HPV-X high-speed video camera (Photo courtesy of Shimadzu).
A new video camera has been developed with specialized sensor technology that enables the achievement of record ultrahigh-speed continuous recording of high-resolution images.

High-speed video technology has been used as an important analysis tool in a variety of fields including microbiological and other microscopic phenomena, materials failure, explosions, and electric discharge. Shimadzu (Nakagyo-ku; Kyoto, Japan) now introduces the Hyper Vision HPV-X video camera, which allows observation of previously unobservable ultrahigh-speed phenomena with high temporal resolution. The camera is applicable to a broad range of fields requiring high-speed video, such as research in advanced science, engineering and medicine, space technology development, product development, and identification of causes of defects.

The HPV-X offers a choice of two modes of image resolution: “full pixel” (FP) for 100,000 pixel images and “half pixel” (HP) for 50,000 pixel images. It is also equipped with a newly developed proprietary high-speed FT-CMOS image sensor and has achieved ultrahigh-speed continuous recording at 10 million frames/second, a world's first, opening new doorways to high-speed recording. This feature is included in all Shimadzu’s Hyper Vision high-speed video cameras, but is not available from any other manufacturer. The HPV-X can record 5 million 100,000 pixel images per second (in FP mode) or 10 million 50,000 pixel images per second (in HP mode).

Recording storage capacity has been increased by increasing memory capacity and the higher frame capacity allows longer recording times. In FP resolution mode, the HPV-X can record 128 frames, which is 20% more than the previous HPV-2 model. In the HP mode, a double-memory function enables recording 256 consecutive frames for recording even longer periods. This gives the user the choice to prioritize either resolution or recording time. Near instantaneous phenomena can now be captured in even more detail: with conventional high-speed video cameras, the resolution drops as recording speed is increased, whereas with the HPV-X, recording can be performed at the maximum resolution of 400 × 250 pixels (in FP mode) regardless of the recording speed used, enabling detailed analysis of ultrahigh-speed phenomena.

Just like the previous model, the simple system configuration offers a compact and highly portable design that makes on-site setup especially simple. The HPV-X camera head just has to be connected to a laptop computer by cable. The camera also retains the same HPV software that has been so popular with users of the previous model, with intuitive features and easy-to-understand setting screens.

Related Links:
Shimadzu



Channels

Genomics/Proteomics

view channel
Image: The photo shows a mouse pancreatic islet as seen by light microscopy. Beta cells can be recognized by the green insulin staining. Glucagon is labeled in red and the nuclei in blue (Photo courtesy of Wikimedia Commons).

Regenerative Potential Is a Trait of Mature Tissues, Not an Innate Feature of Newly Born Cells

Diabetes researchers have found that the ability of insulin-producing beta cells to replicate and respond to elevated glucose concentrations is absent in very young animals and does not appear until after weaning.... Read more

Drug Discovery

view channel
Image: Wafers like the one shown here are used to create “organ-on-a-chip” devices to model human tissue (Photo courtesy of Dr. Anurag Mathur, University of California, Berkeley).

Human Heart-on-a-Chip Cultures May Replace Animal Models for Drug Development and Safety Screening

Human heart cells growing in an easily monitored silicon chip culture system may one day replace animal-based model systems for drug development and safety screening. Drug discovery and development... Read more

Biochemistry

view channel
Image:  Model depiction of a novel cellular mechanism by which regulation of cryptochromes Cry1 and Cry2 enables coordination of a protective transcriptional response to DNA damage caused by genotoxic stress (Photo courtesy of the journal eLife, March 2015, Papp SJ, Huber AL, et al.).

Two Proteins Critical for Circadian Cycles Protect Cells from Mutations

Scientists have discovered that two proteins critical for maintaining healthy day-night cycles also have an unexpected role in DNA repair and protecting cells against genetic mutations that could lead... Read more

Business

view channel

Roche Acquires Signature Diagnostics to Advance Translational Research

Roche (Basel, Switzerland) will advance translational research for next generation sequencing (NGS) diagnostics by leveraging the unique expertise of Signature Diagnostics AG (Potsdam, Germany) in biobanks and development of novel NGS diagnostic assays. Signature Diagnostics is a privately held translational oncology... Read more
 
Copyright © 2000-2015 Globetech Media. All rights reserved.