Features Partner Sites Information LinkXpress
Sign In
Demo Company

High-Performance Calorimeter Enables Superior Materials Analysis and Development

By BiotechDaily International staff writers
Posted on 30 Apr 2013
Print article
Image: Shimadzu’s DSC-60 Plus series new differential scanning calorimeter (Photo courtesy of Shimadzu).
Image: Shimadzu’s DSC-60 Plus series new differential scanning calorimeter (Photo courtesy of Shimadzu).
A new, simple-to-operate, differential scanning calorimeter incorporates new technology designed to offer high sensitivity and resolution required for materials characterization in R&D and quality control applications for areas such as pharmaceuticals, polymers, etc.

Shimadzu (Kyoto, Japan) introduces their new thermal analyzer, the DSC-60 Plus series differential scanning calorimeter (DSC), for the analysis and development of high-performance, highly functional materials. In addition to top-class sensitivity and resolution, a new detector and a unique furnace construction achieve a noise level of less than 0.5 μW, providing a stable baseline from ultralow to high temperatures—across the entire measured temperature range (-140–600 °C). It also features a wide dynamic measurement range of ±150 mW (extended three times compared to previous Shimadzu instruments).

The DSC-60 Plus enables diverse and complex calorimetric measurements via simple operations. A cooling chamber with a liquid-nitrogen option permits easy measurements below room temperature (RT) - extremely convenient as it eliminates the need to install special accessories. A sample loading temperature function (SLTF) enables quick sample change during sequential analysis: while running a series of analyses below RT, the furnace temperature must be returned to near RT during sample replacement—the SLTF heats only the region around the sample when the sample is replaced, so that measurement can be rapidly resumed without moisture condensation.

The DSC-60 Plus is also eco-friendly. The newly designed furnace unit reduces energy consumption by over 20%, as measured when heating from RT to 300 °C at a 20 °C/minute heating rate (compared to previous Shimadzu instruments). When making measurements below RT, the liquid-nitrogen consumption savings exceed 30% (compared to previous Shimadzu instruments). The instrument footprint (W: 320 x H: 500 x D: 500 (mm)) has also been minimized.

The DSC-60 Plus series complies with various guidelines and regulations involving analytical laboratories, such as the PIC/S GMP guidelines, and electronic record/electronic signature (ER/ES) regulations and policies, including the US FDA 21 CFR Part11. In addition, it is compatible with various other analytical instruments and connected network systems, helping to ensure overall laboratory compliance.

Related Links:


Print article



view channel
Image: Glioblastoma multiforme (GBM) (Photo courtesy of the University of California, San Diego School of Medicine).

How Blocking TROY Signaling Slows Brain Cancer Growth

Cancer researchers have found how the low molecular weight drug propentofylline (PPF) slows the growth of the aggressive brain tumor glioblastoma multiforme (GBM). This form of brain cancer is the most... Read more


view channel
Image: A partially completed three-dimensional printed airway from nostril to trachea with fine structure of the nasal cavity showing (Photo courtesy of Dr. Rui Ni, Pennsylvania State University).

The Structure of the Nasal Cavity Channels Food Smells into the Nose and Avoids the Lungs

Three-dimensional printing technology was used to create a model of the nasal cavity that enabled researchers to demonstrate why the smell of food goes into the nose rather than down into the lungs.... Read more


view channel

Molecular Light Shed on “Dark” Cellular Receptors

Scientists have created a new research tool to help find homes for orphan cell-surface receptors, toward better understanding of cell signaling, developing new therapeutics, and determining causes of drug side-effects. The approach may be broadly useful for discovering interactions of orphan receptors with endogenous, naturally... Read more


view channel

Purchase of Biopharmaceutical Company Will Boost Development of Nitroxyl-Based Cardiovascular Disease Drugs

A major international biopharmaceutical company has announced the acquisition of a private biotech company that specializes in the development of drugs for treatment of cardiovascular disease. Bristol-Myers Squibb Co. (New York, NY, USA) has initiated the process to buy Cardioxyl Pharmaceuticals Inc. (Chapel Hill, NC, USA).... Read more
Copyright © 2000-2015 Globetech Media. All rights reserved.