Features | Partner Sites | Information | LinkXpress
Sign In
Demo Company
PURITAN MEDICAL
GLOBETECH PUBLISHING LLC

Discovery Paves Way for Ultrafast High-Resolution Imaging in Real Time

By BiotechDaily International staff writers
Posted on 30 Apr 2013
Image: A shaped group of ultrafast electrons. The pattern is meant to look like the iris shutter of a camera, invoking the concept of a fast snapshot (Photo courtesy of Andrew McCulloch).
Image: A shaped group of ultrafast electrons. The pattern is meant to look like the iris shutter of a camera, invoking the concept of a fast snapshot (Photo courtesy of Andrew McCulloch).
A new research advance involving ultrafast high-resolution imaging in real time could soon become a reality.

In research published April 16, 2013, in the journal Nature Communications, researchers from the University of Melbourne (Australia) and the University’s ARC Centre for Excellence in Coherent X-ray Science have revealed that ultrashort durations of electron bunches generated from laser-cooled atoms can be both very cold and ultrafast.

Lead researcher Assoc. Prof. Robert Scholten reported on this astonishing finding was a significant move towards making ultrafast high-resolution electron imaging a reality. He said the finding would enhance the ability of scientists in labs to create high quality snapshots of quick alterations in biologic molecules and specimens. “Electron microscopy, which uses electrons to create an image of a specimen or biological molecule, has revolutionized science by showing us the structure at micro- and even nanometer scales,” Assoc. Prof. Scholten said. “But it is far too slow to show us critical dynamic processes, for example the folding of a protein molecule which requires time resolution of picoseconds [billionth of a billionth of a second]. “Our discovery opens up the possibility to dramatically enhance the technology.”

Researchers remarked that imaging technology at this level is like making a “molecular movie.” The temperature of the electrons determines how sharp the images can be, while the electron pulse duration has a similar effect to shutter speed. The scientists have been able to merge these two facets of speed and temperature, generating ultrafast electron pulses with cold electrons, creating opportunities for new developments in the field.

Related Links:

University of Melbourne
ARC Centre for Excellence in Coherent X-ray Science



Channels

Genomics/Proteomics

view channel
Image: An activated PTEN dimer that contains two non-mutant proteins (A) can transform the functional lipid (D) on the cellular membrane (E) into a chemical form that tunes down cancer predilection. Dimers that contain a mutated protein (B) or PTEN monomers cannot transform the functional lipid (Photo courtesy of Carnegie Mellon University).

PTEN Requires a Stable Dimer Configuration to Effectively Suppress Tumor Growth

Molecular structural analysis has shown that the PTEN (phosphatase and tensin homolog) tumor suppressor can function effectively only when two wild-type alleles are present to form a stable dimer that... Read more

Business

view channel

MS Drug Deal to Net More Than USD 1 Billion

A pharmaceutical company based in Switzerland has purchased the remaining rights to the multiple sclerosis drug Ofatumumab, which will allow it to continue development of the compound for treating relapsing remitting multiple sclerosis (RRMS) and similar autoimmune diseases. Novartis (Basel, Switzerland) recently announced... Read more
 
Copyright © 2000-2015 Globetech Media. All rights reserved.