Features Partner Sites Information LinkXpress
Sign In
Demo Company

Discovery Paves Way for Ultrafast High-Resolution Imaging in Real Time

By BiotechDaily International staff writers
Posted on 30 Apr 2013
Print article
Image: A shaped group of ultrafast electrons. The pattern is meant to look like the iris shutter of a camera, invoking the concept of a fast snapshot (Photo courtesy of Andrew McCulloch).
Image: A shaped group of ultrafast electrons. The pattern is meant to look like the iris shutter of a camera, invoking the concept of a fast snapshot (Photo courtesy of Andrew McCulloch).
A new research advance involving ultrafast high-resolution imaging in real time could soon become a reality.

In research published April 16, 2013, in the journal Nature Communications, researchers from the University of Melbourne (Australia) and the University’s ARC Centre for Excellence in Coherent X-ray Science have revealed that ultrashort durations of electron bunches generated from laser-cooled atoms can be both very cold and ultrafast.

Lead researcher Assoc. Prof. Robert Scholten reported on this astonishing finding was a significant move towards making ultrafast high-resolution electron imaging a reality. He said the finding would enhance the ability of scientists in labs to create high quality snapshots of quick alterations in biologic molecules and specimens. “Electron microscopy, which uses electrons to create an image of a specimen or biological molecule, has revolutionized science by showing us the structure at micro- and even nanometer scales,” Assoc. Prof. Scholten said. “But it is far too slow to show us critical dynamic processes, for example the folding of a protein molecule which requires time resolution of picoseconds [billionth of a billionth of a second]. “Our discovery opens up the possibility to dramatically enhance the technology.”

Researchers remarked that imaging technology at this level is like making a “molecular movie.” The temperature of the electrons determines how sharp the images can be, while the electron pulse duration has a similar effect to shutter speed. The scientists have been able to merge these two facets of speed and temperature, generating ultrafast electron pulses with cold electrons, creating opportunities for new developments in the field.

Related Links:

University of Melbourne
ARC Centre for Excellence in Coherent X-ray Science

Print article



view channel
Image: Left: Green actin fibers create architecture of the cell. Right: With cytochalasin D added, actin fibers disband and reform in the nuclei (Photo courtesy of the University of North Carolina).

Actin in the Nucleus Triggers a Process That Directs Stem Cells to Mature into Bone

A team of cell biologists has discovered why treatment of mesenchymal stem cells (MSCs) with the mycotoxin cytochalasin D directs them to mature into bone cells (osteoblasts) rather than into fat cells... Read more


view channel

Molecular Light Shed on “Dark” Cellular Receptors

Scientists have created a new research tool to help find homes for orphan cell-surface receptors, toward better understanding of cell signaling, developing new therapeutics, and determining causes of drug side-effects. The approach may be broadly useful for discovering interactions of orphan receptors with endogenous, naturally... Read more


view channel

Purchase of Biopharmaceutical Company Will Boost Development of Nitroxyl-Based Cardiovascular Disease Drugs

A major international biopharmaceutical company has announced the acquisition of a private biotech company that specializes in the development of drugs for treatment of cardiovascular disease. Bristol-Myers Squibb Co. (New York, NY, USA) has initiated the process to buy Cardioxyl Pharmaceuticals Inc. (Chapel Hill, NC, USA).... Read more
Copyright © 2000-2015 Globetech Media. All rights reserved.