Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Discovery Paves Way for Ultrafast High-Resolution Imaging in Real Time

By BiotechDaily International staff writers
Posted on 30 Apr 2013
Print article
Image: A shaped group of ultrafast electrons. The pattern is meant to look like the iris shutter of a camera, invoking the concept of a fast snapshot (Photo courtesy of Andrew McCulloch).
Image: A shaped group of ultrafast electrons. The pattern is meant to look like the iris shutter of a camera, invoking the concept of a fast snapshot (Photo courtesy of Andrew McCulloch).
A new research advance involving ultrafast high-resolution imaging in real time could soon become a reality.

In research published April 16, 2013, in the journal Nature Communications, researchers from the University of Melbourne (Australia) and the University’s ARC Centre for Excellence in Coherent X-ray Science have revealed that ultrashort durations of electron bunches generated from laser-cooled atoms can be both very cold and ultrafast.

Lead researcher Assoc. Prof. Robert Scholten reported on this astonishing finding was a significant move towards making ultrafast high-resolution electron imaging a reality. He said the finding would enhance the ability of scientists in labs to create high quality snapshots of quick alterations in biologic molecules and specimens. “Electron microscopy, which uses electrons to create an image of a specimen or biological molecule, has revolutionized science by showing us the structure at micro- and even nanometer scales,” Assoc. Prof. Scholten said. “But it is far too slow to show us critical dynamic processes, for example the folding of a protein molecule which requires time resolution of picoseconds [billionth of a billionth of a second]. “Our discovery opens up the possibility to dramatically enhance the technology.”

Researchers remarked that imaging technology at this level is like making a “molecular movie.” The temperature of the electrons determines how sharp the images can be, while the electron pulse duration has a similar effect to shutter speed. The scientists have been able to merge these two facets of speed and temperature, generating ultrafast electron pulses with cold electrons, creating opportunities for new developments in the field.

Related Links:

University of Melbourne
ARC Centre for Excellence in Coherent X-ray Science



Print article

Channels

Drug Discovery

view channel
Image: Schematic diagram of dendrimer structure (Photo courtesy of the University of California, Irvine).

Dendrimer-Transported MicroRNA Shown Effective in Treating Mice with Late-Stage Liver Cancer

Cancer researchers have used nanocarriers called dendrimers to transport a specific tumor growth-inhibiting microRNA (miRNA) to the livers of mice with late-stage liver cancer. MicroRNAs are a class... Read more

Business

view channel

Purchase Agreement to Boost Ebola Vaccine Development

A deal to help boost development of a vaccine to protect against Ebolavirus infection was finalized at the recent Davos Conference in Switzerland. Gavi (Geneva, Switzerland), the global alliance for vaccines and immunizations, announced that it would spend five million USD to purchase the Ebola vaccine under development... Read more
Copyright © 2000-2016 Globetech Media. All rights reserved.