Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Events

06 Jun 2016 - 09 Jun 2016
22 Jun 2016 - 24 Jun 2016
04 Jul 2016 - 06 Jul 2016

Directly Reprogramming Nerve Cells in the Brain

By BiotechDaily International staff writers
Posted on 04 Apr 2013
Print article
Image: Reprogrammed nerve cell (Photo courtesy of Malin Parmar).
Image: Reprogrammed nerve cell (Photo courtesy of Malin Parmar).
Generating new cells in the body to cure disease, the purview of cell therapy, has taken another significant step in the development toward new treatments. New Swedish research demonstrated that it is possible to reprogram other cells to become nerve cells, directly in the brain.

Two years ago, researchers in Lund University (Sweden) were the first in the world to reprogram fibroblasts to dopamine-producing nerve cells, without going through the stem cell stage. The scientists are now going further and shown that it is possible to reprogram both skin cells and support cells directly to nerve cells, in place in the brain.

“The findings are the first important evidence that it is possible to reprogram other cells to become nerve cells inside the brain,” said Dr. Malin Parmar, research group leader and reader in neurobiology at Lund.

The researchers employed genes designed to be switched on or off using a drug. The genes were inserted into two types of human cells, glia cells and fibroblasts, support cells that are naturally present in the brain. Once the researchers had transplanted the cells into the brains of rats, the genes were triggered using a drug in the animals’ drinking water. The cells then began their conversion into nerve cells.

In other research with lab mice, where similar genes were injected into the mice’s brains, the investigators also were able to reprogram the mice’s own glia cells to become nerve cells. “The research findings have the potential to open the way for alternatives to cell transplants in the future, which would remove previous obstacles to research, such as the difficulty of getting the brain to accept foreign cells, and the risk of tumor development,” said Dr. Parmar.

The new technique of direct reprogramming in the brain could create new ways to more successfully replace dying brain cells in disorders such as Parkinson’s disease. “We are now developing the technique so that it can be used to create new nerve cells that replace the function of damaged cells. Being able to carry out the reprogramming in vivo makes it possible to imagine a future in which we form new cells directly in the human brain, without taking a detour via cell cultures and transplants,” concluded Dr. Parmar.

The study’s findings were published March 26, 2012, in the journal Proceedings of the National Academy of Science of the United States of America (PNAS).

Related Links:

Lund University



Print article

Channels

Genomics/Proteomics

view channel
Image: A dark field photomicrograph showing the spirochete bacterium Borrelia burgdorferi, the pathogen responsible for causing Lyme disease (Photo courtesy of the CDC).

Statins May Help Block Transmission of Lyme Disease

A recent study found that treatment with cholesterol-lowering statins reduced the number of Borrelia burgdorferi bacteria in rodents, which helped to block transmission of Lyme disease. Lyme disease... Read more

Drug Discovery

view channel

Experimental Small-Molecule Anticancer Drug Blocks RAS-binding Domains

The experimental small-molecule anticancer drug rigosertib was shown to block tumor growth by acting as an RAS-mimetic and interacting with the RAS binding domains of RAF kinases, resulting in their inability to bind to RAS, which inhibited the RAS-RAF-MEK pathway. Oncogenic activation of RAS genes due to point mutations... Read more

Biochemistry

view channel
Image: A space-filling model of the anticonvulsant drug carbamazepine (Photo courtesy of Wikimedia Commons).

Wastewater May Contaminate Crops with Potentially Dangerous Pharmaceuticals

Reclaimed wastewater used to irrigate crops is contaminated with pharmaceutical residues that can be detected in the urine of those who consumed such produce. Investigators at the Hebrew University... Read more

Business

view channel

European Biotech Agreement to Promote Antigen-Drug Conjugation Technology

Two European biotech companies have joined forces to exploit and commercialize an innovative, site-specific ADC (antigen-drug conjugate) conjugation technology. ProBioGen (Berlin, Germany), a company specializing in the development and manufacture of complex glycoproteins and Eucodis Bioscience (Vienna, Austria), a... Read more
Copyright © 2000-2016 Globetech Media. All rights reserved.