Features | Partner Sites | Information | LinkXpress
Sign In
PZ HTL SA
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC

Directly Reprogramming Nerve Cells in the Brain

By BiotechDaily International staff writers
Posted on 04 Apr 2013
Image: Reprogrammed nerve cell (Photo courtesy of Malin Parmar).
Image: Reprogrammed nerve cell (Photo courtesy of Malin Parmar).
Generating new cells in the body to cure disease, the purview of cell therapy, has taken another significant step in the development toward new treatments. New Swedish research demonstrated that it is possible to reprogram other cells to become nerve cells, directly in the brain.

Two years ago, researchers in Lund University (Sweden) were the first in the world to reprogram fibroblasts to dopamine-producing nerve cells, without going through the stem cell stage. The scientists are now going further and shown that it is possible to reprogram both skin cells and support cells directly to nerve cells, in place in the brain.

“The findings are the first important evidence that it is possible to reprogram other cells to become nerve cells inside the brain,” said Dr. Malin Parmar, research group leader and reader in neurobiology at Lund.

The researchers employed genes designed to be switched on or off using a drug. The genes were inserted into two types of human cells, glia cells and fibroblasts, support cells that are naturally present in the brain. Once the researchers had transplanted the cells into the brains of rats, the genes were triggered using a drug in the animals’ drinking water. The cells then began their conversion into nerve cells.

In other research with lab mice, where similar genes were injected into the mice’s brains, the investigators also were able to reprogram the mice’s own glia cells to become nerve cells. “The research findings have the potential to open the way for alternatives to cell transplants in the future, which would remove previous obstacles to research, such as the difficulty of getting the brain to accept foreign cells, and the risk of tumor development,” said Dr. Parmar.

The new technique of direct reprogramming in the brain could create new ways to more successfully replace dying brain cells in disorders such as Parkinson’s disease. “We are now developing the technique so that it can be used to create new nerve cells that replace the function of damaged cells. Being able to carry out the reprogramming in vivo makes it possible to imagine a future in which we form new cells directly in the human brain, without taking a detour via cell cultures and transplants,” concluded Dr. Parmar.

The study’s findings were published March 26, 2012, in the journal Proceedings of the National Academy of Science of the United States of America (PNAS).

Related Links:

Lund University



comments powered by Disqus

Channels

Genomics/Proteomics

view channel
Image: This novel, flexible film that can react to light is a promising step toward an artificial retina (Photo courtesy of the American Chemical Society).

Novel Nanofilm May Be Artificial Retina Precursor

Researchers have used advanced nanotechnology techniques to develop a light-sensitive film that has potential for future artificial retina applications. Investigators at the Hebrew University of Jerusalem... Read more

Drug Discovery

view channel
Image: The new peptide offers a triple hormone effect in a single-cell molecule (Photo courtesy of Indiana University).

Tripeptide Drug Effectively Controls Metabolic Syndrome in Rodent Model

Promising results in reducing obesity and normalizing glucose metabolism obtained with a synthetic dipeptide drug have been enhanced by the addition of a molecule of a third hormone, glucagon.... Read more

Biochemistry

view channel

Blocking Enzyme Switch Turns Off Tumor Growth in T-Cell Acute Lymphoblastic Leukemia

Researchers recently reported that blocking the action of an enzyme “switch” needed to activate tumor growth is emerging as a practical strategy for treating T-cell acute lymphoblastic leukemia. An estimated 25% of the 500 US adolescents and young adults diagnosed yearly with this aggressive disease fail to respond to... Read more

Business

view channel

R&D Partnership Initiated to Reduce Development Time for New Drugs

nanoPET Pharma, GmbH (Berlin, Germany) signed an open-ended framework contract with the international pharmaceutical company Boehringer Ingelheim (Ridgefield, CT, USA). By developing customized contrast agents for research in both basic and preclinical studies, nanoPET Pharma will contribute to the enhancement of Boehringer... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.