Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Events

06 Jun 2016 - 09 Jun 2016
22 Jun 2016 - 24 Jun 2016
04 Jul 2016 - 06 Jul 2016

Fine-Tuning Stem Cell Therapy to Repair the Heart

By BiotechDaily International staff writers
Posted on 27 Mar 2013
Print article
Stem cells have the potential to grow into a range of cell types, including heart cells. Researchers are now trying to refine the process of repairing and regenerating heart tissue damaged by a heart attack with stem cells.

A recent study from Cedars-Sinai Heart Institute (Los Angeles, CA, USA) suggests that stem cells may, undeniably, heal damaged hearts. The researchers treated 17 heart attack survivors with an infusion of stem cells taken from their own hearts. One year later, the amount of scar tissue had shrunk by about 50%. These findings look dramatic, but investigators are wondering if they an indication that they are close to perfecting stem cell therapy.

“This is a field where, depending on which investigator you ask, you can get incredibly different answers,” Dr. Richard Lee, professor of medicine at Harvard Medical School (Boston, MA, USA), and a leading specialist on stem cell therapy, reported in the March 2013 issue of Harvard Women’s Health Watch. “The field is young. Some studies show only modest or no improvement in heart function, but others have shown dramatically improved function. We’re waiting to see if other doctors can also achieve really good results in other patients.”

New research is generating contrary findings in part, because researchers use diverse approaches to harvest and use stem cells. Some are gathered from the bone marrow of donors, others from the recipient’s own heart. It is not evident which approach works optimally. “Some investigators think this is just a few years away,” concluded Dr. Lee. “And then there are others who feel that there is much more work to be done.”

Presently, stem cell therapy is available only to individuals who participate in a research trial.

Related Links:

Cedars-Sinai Heart Institute
Harvard Medical School




Print article

Channels

Genomics/Proteomics

view channel
Image: Follicular helper T-cells (TFH cells, shown in blue) play a crucial role in the maturation of antibody-producing B-cells (shown in green). Activated B-cells give rise germinal centers (shown in red), where mature B-cells proliferate and produce highly specific antibodies against pathogens. Top left: normal germinal center in a mouse tonsil. All others: Germinal centers fail to form when the interaction between ICOS and TBK1 is interrupted (Photo courtesy of Dr. Kok-Fai Kong, La Jolla Institute for Allergy and Immunology).

Molecular Pathway Controlling High-affinity Antibody Production Identified

A molecular pathway has been identified that controls formation of follicular helper T-cells (TFH cells) germinal centers and production of high-affinity antibodies through interaction with the inducible... Read more

Drug Discovery

view channel

Experimental Small-Molecule Anticancer Drug Blocks RAS-binding Domains

The experimental small-molecule anticancer drug rigosertib was shown to block tumor growth by acting as an RAS-mimetic and interacting with the RAS binding domains of RAF kinases, resulting in their inability to bind to RAS, which inhibited the RAS-RAF-MEK pathway. Oncogenic activation of RAS genes due to point mutations... Read more

Biochemistry

view channel
Image: A space-filling model of the anticonvulsant drug carbamazepine (Photo courtesy of Wikimedia Commons).

Wastewater May Contaminate Crops with Potentially Dangerous Pharmaceuticals

Reclaimed wastewater used to irrigate crops is contaminated with pharmaceutical residues that can be detected in the urine of those who consumed such produce. Investigators at the Hebrew University... Read more

Business

view channel

European Biotech Agreement to Promote Antigen-Drug Conjugation Technology

Two European biotech companies have joined forces to exploit and commercialize an innovative, site-specific ADC (antigen-drug conjugate) conjugation technology. ProBioGen (Berlin, Germany), a company specializing in the development and manufacture of complex glycoproteins and Eucodis Bioscience (Vienna, Austria), a... Read more
Copyright © 2000-2016 Globetech Media. All rights reserved.