Features Partner Sites Information LinkXpress
Sign In
Demo Company

Fine-Tuning Stem Cell Therapy to Repair the Heart

By BiotechDaily International staff writers
Posted on 27 Mar 2013
Print article
Stem cells have the potential to grow into a range of cell types, including heart cells. Researchers are now trying to refine the process of repairing and regenerating heart tissue damaged by a heart attack with stem cells.

A recent study from Cedars-Sinai Heart Institute (Los Angeles, CA, USA) suggests that stem cells may, undeniably, heal damaged hearts. The researchers treated 17 heart attack survivors with an infusion of stem cells taken from their own hearts. One year later, the amount of scar tissue had shrunk by about 50%. These findings look dramatic, but investigators are wondering if they an indication that they are close to perfecting stem cell therapy.

“This is a field where, depending on which investigator you ask, you can get incredibly different answers,” Dr. Richard Lee, professor of medicine at Harvard Medical School (Boston, MA, USA), and a leading specialist on stem cell therapy, reported in the March 2013 issue of Harvard Women’s Health Watch. “The field is young. Some studies show only modest or no improvement in heart function, but others have shown dramatically improved function. We’re waiting to see if other doctors can also achieve really good results in other patients.”

New research is generating contrary findings in part, because researchers use diverse approaches to harvest and use stem cells. Some are gathered from the bone marrow of donors, others from the recipient’s own heart. It is not evident which approach works optimally. “Some investigators think this is just a few years away,” concluded Dr. Lee. “And then there are others who feel that there is much more work to be done.”

Presently, stem cell therapy is available only to individuals who participate in a research trial.

Related Links:

Cedars-Sinai Heart Institute
Harvard Medical School

Print article



view channel
Image: Left: Green actin fibers create architecture of the cell. Right: With cytochalasin D added, actin fibers disband and reform in the nuclei (Photo courtesy of the University of North Carolina).

Actin in the Nucleus Triggers a Process That Directs Stem Cells to Mature into Bone

A team of cell biologists has discovered why treatment of mesenchymal stem cells (MSCs) with the mycotoxin cytochalasin D directs them to mature into bone cells (osteoblasts) rather than into fat cells... Read more


view channel

Molecular Light Shed on “Dark” Cellular Receptors

Scientists have created a new research tool to help find homes for orphan cell-surface receptors, toward better understanding of cell signaling, developing new therapeutics, and determining causes of drug side-effects. The approach may be broadly useful for discovering interactions of orphan receptors with endogenous, naturally... Read more


view channel

Purchase of Biopharmaceutical Company Will Boost Development of Nitroxyl-Based Cardiovascular Disease Drugs

A major international biopharmaceutical company has announced the acquisition of a private biotech company that specializes in the development of drugs for treatment of cardiovascular disease. Bristol-Myers Squibb Co. (New York, NY, USA) has initiated the process to buy Cardioxyl Pharmaceuticals Inc. (Chapel Hill, NC, USA).... Read more
Copyright © 2000-2015 Globetech Media. All rights reserved.